国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (5): 600-606.doi: 10.7518/gjkq.2022086

• 综述 • 上一篇    下一篇

常染色体显性钙化不全型釉质发育不全相关基因序列相似性83蛋白质家族成员H及其突变的研究进展

郭思敏1(),陈婷1,2()   

  1. 1.南方医科大学口腔医学院 广州 510515
    2.南方医科大学南方医院口腔科 广州 510515
  • 收稿日期:2021-11-25 修回日期:2022-03-02 出版日期:2022-09-01 发布日期:2022-09-16
  • 通讯作者: 陈婷
  • 作者简介:郭思敏,学士,Email:980281492@qq.com
  • 基金资助:
    国家自然科学基金(81800950)

Research progress on the gene family with sequence similarity 83 member H related to autosomal dominant hypocalcified amelogenesis imperfecta and its mutation

Guo Simin1(),Chen Ting1,2()   

  1. 1.School of Stomatology, Southern Me-dical University, Guangzhou 510515, China
    2.Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2021-11-25 Revised:2022-03-02 Online:2022-09-01 Published:2022-09-16
  • Contact: Ting Chen
  • Supported by:
    National Natural Science Foundation of China(81800950)

摘要:

常染色体显性钙化不全型釉质发育不全(ADHCAI)是一种影响釉质结构的遗传性疾病,基本病变为釉质基质形成正常但无明显的矿化。该疾病具有明显的临床和遗传异质性,临床表现为患牙的釉质厚度正常而硬度降低,影响功能和美观。序列相似性83蛋白质家族成员H (FAM83H)在人体的多种组织和细胞中普遍表达,包括成釉细胞、成牙本质细胞和牙槽骨。该基因编码的细胞内蛋白质被认为与角蛋白细胞骨架和桥粒相关,在细胞内分子运输、细胞骨架网络调节和釉质形成中发挥作用。FAM83H基因中的许多突变已被证实可在不同人群中导致ADHCAI。近年来一些研究从囊泡运输、细胞骨架等多角度入手,探究FAM83H突变与ADHCAI发生发展之间的关系,本文就ADHCAI相关基因FAM83H及其突变的研究进展进行综述。

关键词: 常染色体显性钙化不全型釉质发育不全, 序列相似性83蛋白质家族成员H, 截断突变

Abstract:

Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) is a genetic disorder characterized by abnormal enamel formation. The enamel matrix is formed normally but without apparent mineralization. The ADHCAI has evident clinical and genetic heterogeneity. The affected tooth’s enamel thickness is normal however, the surface hardness is reduced, thus affecting the tooth’s function and aesthetics. Family with sequence similarity 83 member H (FAM83H) is a member of family with sequence similarity 83. It is widely expressed in a variety of human tissues and cells including ameloblasts, odontoblasts, and alveolar bone. It encodes an intracellular protein that is associated with keratin cytoskeleton and desmosomes, playing a role in intracellular molecular transport, cytoskeletal network regulation, and enamel formation. Various mutations have been identified in the FAM83H gene that leads to ADHCAI in different populations. In recent years, several studies explored the relationship between mutations in FAM83H and the occurrence and development of ADHCAI from multiple perspectives, such as vesicle trafficking and cytoskeletal organization. In this review, we will focus on the research progress on the gene FAM83H related to ADHCAI and its mutation.

Key words: autosomal dominant hypocalcified amelogenesis imperfecta, family with sequence similarity 83 member H, truncation mutation

中图分类号: 

  • R 780.2

表 1

已报道的与ADHCAI有关的FAM83突变"

编号cDNA蛋白质家系口腔临床表现

全景片

表现

首次发表的

作者及年份

萌出前釉质厚度萌出后釉质磨损的程度萌出后釉质质地

牙齿

颜色

有无前牙开??对热刺激敏感程度釉质放射密度与牙本质接近
1c.973C>Tp.R325*韩国-++柔软*+++*Kim等[8](2008)
2c.1192C>Tp.Q398*韩国-++柔软*+++*
3c.1243G>Tp.E415*西班牙-+++柔软浅黄色*++*Lee等[10](2008)
4c.891T>Ap.Y297*亚洲人-+++柔软浅黄色*++*
5c.1380G>Ap.W460*白种人-+++柔软浅黄色*++*
6c.2029C>Tp.Q677*白种人-+++柔软浅黄色*++*
7c.1330C>Tp.Q444*土耳其*******Hart 等[11](2009)
8c.1366C>Tp.Q456*土耳其*******
9c.1354C>TpQ452*韩国-++柔软棕色*+*Hyun等[12](2009)
10c.1408C>Tp.Q470*白种人*******Wright等[13](2009)
11c.860C>Ap.S287*白种人*******
12c.1379G>Ap.W460*白种人*******
13c.2080G>Tp.E694*白种人*******
14c.923_924delTCp.L308fs*323白种人*******
15c.1872_1873delCCp.L625fs*703白种人*******
16c.1374C>Ap.Y458*欧洲人*++柔软黄色*+++EL-Sayed等[14](2010)
17c.906T>Ap.Y302*丹麦-++柔软黄棕色+*+Haubek等[15](2011)
18c.1354C>Tp.Q452*丹麦-++柔软黄棕色+*+
19c.906T>Gp.Y302*中国*++柔软淡黄色-++*Song等[16](2012)
20c.924dupTp.V309Rfs*324中国*++柔软黄棕色-++*
21c.1354C>TpQ452*中国*++柔软黄棕色-++*
22c.2029 C>Tp.Q677*中国*++柔软黄棕色-++*
23c.1669G>Tp.Gly557Cys智利-+++柔软黄棕色*+++Urzúa等[9](2015)
24c.1387C>Tp.Gln463X;泰国-+++柔软黄黑色+++*Kantaputra等[17](2016)
25c.1369C>Tp.Gln457*土耳其-+++柔软黄棕色**+Wang等[3](2016)
26c.1915A>Tp.Lys639*台湾-+++柔软黄棕色+*+
27c.931dupCp.V311Rfs*13中国*+++柔软黄棕色***Wang等[18](2017)
28c.1130_1131delinsAAp.S377X中国-++柔软黄棕色**+
29c.1147G > Tp.E383X中国*+++*深棕色+**
30c.1261G>Tp.E421*泰国-+++*黄棕色**+Nowwarote等[5](2018)
31c.1222A>Tp.K408X中国*+++柔软黑棕色+*+Yu等[19](2018)
32c.1309_1311delinsTAAp.His437*台湾-+++*深棕色**+Wang等[20](2021)
33c.1375C>Tp.Gln459*白种人*+++*黄棕色**+
34c.1828G>Tp.Glu610*台湾*+++*黑棕色***
1 Kim YJ, Lee Y, Kasimoglu Y, et al. Recessive mutations in ACP4 cause amelogenesis imperfecta[J]. J Dent Res, 2022, 101(1): 37-45.
2 Mendoza G, Pemberton TJ, Lee K, et al. A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3[J]. Hum Genet, 2007, 120(5): 653-662.
3 Wang SK, Hu Y, Yang J, et al. Fam83h null mice support a neomorphic mechanism for human ADHCAI[J]. Mol Genet Genomic Med, 2016, 4(1): 46-67.
4 Okada J, Sunaga N, Yamada E, et al. FAM83G is a novel inducer of apoptosis[J]. Molecules, 2020, 25(12): 2810.
5 Nowwarote N, Theerapanon T, Osathanon T, et al. Amelogenesis imperfecta: a novel FAM83H mutation and characteristics of periodontal ligament cells[J]. Oral Dis, 2018, 24(8): 1522-1531.
6 Kweon YS, Lee KE, Ko J, et al. Effects of Fam83h overexpression on enamel and dentine formation[J]. Arch Oral Biol, 2013, 58(9): 1148-1154.
7 Kim KM, Park SH, Bae JS, et al. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC[J]. Sci Rep, 2017, 7: 3274.
8 Kim JW, Lee SK, Lee ZH, et al. FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta[J]. Am J Hum Genet, 2008, 82(2): 489-494.
9 Urzúa B, Martínez C, Ortega-Pinto A, et al. Novel missense mutation of the FAM83H gene causes retention of amelogenin and a mild clinical phenotype of hypocalcified enamel[J]. Arch Oral Biol, 2015, 60(9): 1356-1367.
10 Lee SK, Hu JCC, Bartlett JD, et al. Mutational spectrum of FAM83H: the C-terminal portion is required for tooth enamel calcification[J]. Hum Mutat, 2008, 29(8): E95-E99.
11 Hart PS, Becerik S, Cogulu D, et al. Novel FAM83H mutations in Turkish families with autosomal dominant hypocalcified amelogenesis imperfecta[J]. Clin Genet, 2009, 75(4): 401-404.
12 Hyun HK, Lee SK, Lee KE, et al. Identification of a novel FAM83Hmutation and microhardness of an affected molar in autosomal dominant hypocalcified amelogenesis imperfecta[J]. Int Endod J, 2009, 42(11): 1039-1043.
13 Wright JT, Frazier-Bowers S, Simmons D, et al. Phenotypic variation in FAM83H-associated amelogenesis imperfecta[J]. J Dent Res, 2009, 88(4): 356-360.
14 El-Sayed W, Shore RC, Parry DA, et al. Ultrastructural analyses of deciduous teeth affected by hypocalcified amelogenesis imperfecta from a family with a novel Y458X FAM83H nonsense mutation[J]. Cells Tissues Organs, 2010, 191(3): 235-239.
15 Haubek D, Gjørup H, Jensen LG, et al. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation[J]. Int J Paediatr Dent, 2011, 21(6): 407-412.
16 Song YL, Wang CN, Zhang CZ, et al. Molecular characterization of amelogenesis imperfecta in Chinese patients[J]. Cells Tissues Organs, 2012, 196(3): 271-279.
17 Kantaputra PN, Intachai W, Auychai P. All enamel is not created equal: supports from a novel FAM83H mutation[J]. Am J Med Genet A, 2016, 170A(1): 273-276.
18 Wang X, Wang WJ, Qin M, et al. Novel FAM83H mutations in patients with amelogenesis imperfecta[J]. Sci Rep, 2017, 7: 6075.
19 Yu SL, Quan JK, Wang XZ, et al. A novel FAM83H mutation in one Chinese family with autosomal-dominant hypocalcification amelogenesis imperfecta[J]. Mutagenesis, 2018, 33(4): 333-340.
20 Wang SK, Zhang H, Hu CY, et al. FAM83H and autosomal dominant hypocalcified amelogenesis imperfecta[J]. J Dent Res, 2021, 100(3): 293-301.
21 丁玉梅. 遗传性牙釉质发育不全相关基因Fam83h突变的鉴定及亚细胞定位的研究[D]. 武汉: 华中科技大学, 2009.
Ding YM. The identification of amelogenesis imperfecta-causing Fam83h mutation and study of the subcellular localization of Fam83h[D]. Wuhan: Huazhong University of Science and Technology, 2009.
22 Huang WS, Yang M, Wang CN, et al. Evolutionary analysis of FAM83H in vertebrates[J]. PLoS One, 2017, 12(7): e0180360.
23 Zheng YC, Lu T, Chen JF, et al. The gain-of-function FAM83H mutation caused hypocalcification amelogenesis imperfecta in a Chinese family[J]. Clin Oral Invest, 2021, 25(5): 2915-2923.
24 Yang X, Yamazaki H, Yamakoshi Y, et al. Trafficking and secretion of keratin 75 by ameloblasts in vivo [J]. J Biol Chem, 2019, 294(48): 18475-18487.
25 Duverger O, Carlson JC, Karacz CM, et al. Correction: genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay[J]. PLoS Genet, 2019, 15(6): e1008230.
26 Kuga T, Sasaki M, Mikami T, et al. FAM83H and casein kinase Ⅰ regulate the organization of the keratin cytoskeleton and formation of desmosomes[J]. Sci Rep, 2016, 6: 26557.
27 Fulcher LJ, Bozatzi P, Tachie-Menson T, et al. The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms[J]. Sci Signal, 2018, 11(531): eaao2341.
28 Kuga T, Kume H, Kawasaki N, et al. A novel mechanism of keratin cytoskeleton organization through casein kinase Ⅰα and FAM83H in colorectal cancer[J]. J Cell Sci, 2013, 126(Pt 20): 4721-4731.
29 Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, et al. Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H[J]. Cell Signal, 2020, 72: 109632.
30 杨梅. Fam83h突变对成釉细胞矿化的影响及机制研究[D]. 武汉: 武汉大学, 2018.
Yang M. Study on the mechanism and effects of Fam83h mutations on the mineralization in ameloblasts[D]. Wuhan: Wuhan University, 2018.
31 Wang SK, Hu YY, Smith CE, et al. The enamel phenotype in homozygous Fam83h truncation mice[J]. Mol Genet Genomic Med, 2019, 7(6): e724.
32 Kuga T, Kume H, Adachi J, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON[J]. Sci Rep, 2016, 6: 34472.
33 Ding Y, Estrella MRP, Hu YY, et al. Fam83h is associated with intracellular vesicles and ADHCAI[J]. J Dent Res, 2009, 88(11): 991-996.
34 Peotter J, Kasberg W, Pustova I, et al. COPⅡ-mediated trafficking at the ER/ERGIC interface[J]. Traffic, 2019, 20(7): 491-503.
35 Nasseri S, Nikkho B, Parsa S, et al. Generation of Fam83h knockout mice by CRISPR/Cas9-mediated gene engineering[J]. J Cell Biochem, 2019, 120(7): 11033-11043.
36 Nollet M, Santucci-Darmanin S, Breuil V, et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis[J]. Autophagy, 2014, 10(11): 1965-1977.
37 Lee MJ, Lee SK, Lee KE, et al. Expression patterns of the Fam83h gene during murine tooth development[J]. Arch Oral Biol, 2009, 54(9): 846-850.
38 Jia J, Yang F, Yang M, et al. P38/JNK signaling pathway mediates the fluoride-induced down-regulation of Fam83h[J]. Biochem Biophys Res Commun, 2016, 471(3): 386-390.
39 Yang M, Huang WS, Yang F, et al. Fam83h mutation inhibits the mineralization in ameloblasts by activating Wnt/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2018, 501(1): 206-211.
40 Nowwarote N, Osathanon T, Kanjana K, et al. Decreased osteogenic activity and mineralization of alveolar bone cells from a patient with amelogenesis imperfecta and FAM83H 1261G>T mutation[J]. Genes Dis, 2019, 6(4): 391-397.
41 Roma M, Hegde P, Durga Nandhini M, et al. Management guidelines for amelogenesis imperfecta:a case report and review of the literature[J]. J Med Case Rep, 2021, 15: 67.
[1] 杨明燕,张帆,赵蕾. 口腔菌群变化影响放射治疗和化学治疗相关性口腔黏膜炎病程的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 43-51.
[2] 罗婉逸,韩居熺,周学东,彭显,郑欣. 具核梭杆菌促进结直肠癌发生发展机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 52-60.
[3] 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396.
[4] 查蕴宸,张佳佳,孔卫东. 原发性牙齿萌出障碍病因的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 386-391.
[5] 周双双 郑欣 周学东 徐欣. 菌斑生物膜产碱代谢与龋病[J]. 国际口腔医学杂志, 2016, 43(5): 573-577.
[6] 孙菲1 张建刚2 肖水清2. 细胞致死性扩张毒素和外膜蛋白的结构功能和致病机制[J]. 国际口腔医学杂志, 2016, 43(5): 565-568.
[7] 徐新月1 李雪健1 任高彤1 焦凯2,3 牛丽娜3,4. 免疫细胞来源的儿茶酚胺类物质在机体代谢及炎性疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(5): 599-604.
[8] 黄慧,张琼,邹静. 低龄儿童龋微生物群落的研究进展[J]. 国际口腔医学杂志, 2016, 43(3): 295-297.
[9] 许鹏,陈传俊. 原发性三叉神经痛与单纯疱疹病毒感染的相关性研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 220-222.
[10] 郑赛男,蒋丽,李伟. 口腔细菌黏附机制的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 223-227.
[11] 余培 薛晶 李伟. 微生物代谢组学的研究策略及其在人体微生物中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 703-709.
[12] 欧美珍 凌均棨. 多胺对细菌生物膜作用的多样性[J]. 国际口腔医学杂志, 2015, 42(3): 361-363.
[13] 张瑞瑞 孙克勤. 根管治疗后疾病中粪肠球菌的致病性和检测及清除[J]. 国际口腔医学杂志, 2015, 42(3): 357-360.
[14] 周正 赵长铭 焦凯 王美青. 交感神经系统-肾上腺素能受体对骨改建的调节作用[J]. 国际口腔医学杂志, 2015, 42(3): 348-351.
[15] 程远 殷艳丽 赵蕾. 龈沟产线菌的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 593-597.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .