国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (5): 506-510.doi: 10.7518/gjkq.2022083

• 口腔微生物专栏 • 上一篇    下一篇

变异链球菌糖转运及其调控机制的研究进展

龚涛(),李雨庆,周学东()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医学院 成都 610041
  • 收稿日期:2022-01-06 修回日期:2022-05-08 出版日期:2022-09-01 发布日期:2022-09-16
  • 通讯作者: 周学东
  • 作者简介:龚涛,博士,Email:gongtao_2016@163.com
  • 基金资助:
    国家自然科学基金(81670978)

Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans

Gong Tao(),Li Yuqing,Zhou Xuedong.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-01-06 Revised:2022-05-08 Online:2022-09-01 Published:2022-09-16
  • Contact: Xuedong. Zhou
  • Supported by:
    National Natural Science Foundation of China(81670978)

摘要:

龋病是最常见的口腔感染性疾病之一,变异链球菌是龋病的主要致病微生物。糖类是细菌最主要的碳源,也是能量代谢,物质代谢和生理功能等方面重要的物质基础。糖转运是糖代谢的首要过程,且与变异链球菌致龋毒力因子的形成密切相关。本文对变异链球菌糖转运方式及其调控机制的研究进展进行综述,以期为口腔中其他细菌糖转运相关机制研究提供参考。

关键词: 龋病, 变异链球菌, 糖转运, 调控机制

Abstract:

Dental caries is one of the most prevalent infectious diseases. Streptococcus mutans (S. mutans) is regarded as the major etiological pathogen. Sugars are the major carbohydrate sources used by bacteria and act as important substance basis for energy metabolism, material metabolism and physiological functions. Sugar transporter is the first process of sugar metabolism and is closely related to the formation of cariogenic virulence factors of S. mutans. This article reviewed the research progress on the ways of sugar transporter and its regulatory mechanisms of S. mutans to provide a reference for the research of sugar transport-related mechanisms in other oral bacterial.

Key words: dental caries, Streptococcus mutans, sugar transporter, regulatory mechanisms

中图分类号: 

  • R 788

图 1

PTS和ABC转运系统P代表磷酸基团。"

1 周学东, 凌均棨, 梁景平, 等. 龋病临床治疗难度因素及处理[J]. 华西口腔医学杂志, 2017, 35(1): 1-7.
Zhou XD, Ling JQ, Liang JP, et al. Difficulty influence factors of dental caries clinical treatment[J]. West China J Stomatol, 2017, 35(1): 1-7.
2 GBD Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1211-1259.
3 周学东, 程磊, 郑黎薇. 全生命周期的龋病管理[J]. 中华口腔医学杂志, 2018, 53(6): 367-373.
Zhou XD, Cheng L, Zheng, LW. Strategies of caries management in whole life cycle[J]. Chin J Stomatol, 2018, 53(6): 367-373.
4 王兴. 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018: 25-33.
Wang X. The fourth national oral health epidemiological survey report[M]. Beijing: People’s Medical Publishing House, 2018: 25-33.
5 周学东, 岳松龄. 实用龋病学[M]. 北京: 人民卫生出版社, 2008: 184-186.
Zhou XD, Yue SL. Applied cariology[M]. Beijing: People’s Medical Publishing House, 2008: 184-186.
6 Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions[J]. Nat Rev Microbiol, 2018, 16(12): 745-759.
7 Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: current and prospective therapeutic strategies[J]. Nat Rev Microbiol, 2017, 15(12): 740-755.
8 Liu Y, Ren Z, Hwang G, et al. Therapeutic strategies targeting cariogenic biofilm microenvironment[J]. Adv Dent Res, 2018, 29(1): 86-92.
9 Cugini C, Shanmugam M, Landge N, et al. The role of exopolysaccharides in oral biofilms[J]. J Dent Res, 2019, 98(7): 739-745.
10 Gao L, Xu TS, Huang G, et al. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500.
11 Kawada-Matsuo M, Oogai Y, Komatsuzawa H. Sugar allocation to metabolic pathways is tightly regulated and affects the virulence of Streptococcus mutans [J]. Genes (Basel), 2016, 8(1): E11.
12 Vadeboncoeur C, Pelletier M. The phosphoenolpyruvate: sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism[J]. FEMS Microbiol Rev, 1997, 19(3): 187-207.
13 Cvitkovitch DG, Boyd DA, Hamilton IR. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system[J]. J Bacteriol, 1995, 177(19): 5704-5706.
14 Ajdić D, Pham VT. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays[J]. J Bacteriol, 2007, 189(14): 5049-5059.
15 刘倩钰, 吴丽雯, 牛建军, 等. 细菌磷酸转移酶系统(PTS)的组成与功能研究进展[J]. 微生物学通报, 2020, 47(7): 2266-2277.
Liu QY, Wu LW, Niu JJ, et al. Research progress of the composition and function of bacterial phosph-otransferase system[J]. Microbiology, 2020, 47(7): 2266-2277.
16 Ajdić D, McShan WM, McLaughlin RE, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14434-14439.
17 Zeng L, Chakraborty B, Farivar T, et al. Coordinated regulation of the EIIMan and fruRKI operons of Streptococcus mutans by global and fructose-speci-fic pathways[J]. Appl Environ Microbiol, 2017, 83(21): e01403-e01417.
18 Webb AJ, Homer KA, Hosie AH. Two closely related ABC transporters in Streptococcus mutans are involved in disaccharide and/or oligosaccharide uptake[J]. J Bacteriol, 2008, 190(1): 168-178.
19 曾荟荟, 凌均棨. 三磷酸腺苷结合盒外排子对变异链球菌毒力因子影响的研究进展[J]. 中华口腔医学研究杂志(电子版), 2015, 9(3): 247-251.
Zeng HH, Ling JQ. Effects of ATP-binding cassette exporters on virulence factors in Streptococcus mutans [J]. Chin J Stomatol Res (Electr Ed), 2015, 9(3): 247-251.
20 Baker JL, Lindsay EL, Faustoferri RC, et al. Characterization of the trehalose utilization operon in Streptococcus mutans reveals that the TreR transcriptional regulator is involved in stress response pathways and toxin production[J]. J Bacteriol, 2018, 200(12): e00057-e00018.
21 Zeng L, Burne RA. Transcriptional regulation of the cellobiose operon of Streptococcus mutans [J]. J Bacteriol, 2009, 191(7): 2153-2162.
22 Li ZB, Xiang ZT, Zeng JM, et al. A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes[J]. Front Microbiol, 2018, 9: 3224.
23 Vujanac M, Iyer VS, Sengupta M, et al. Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR[J]. Mol Oral Microbiol, 2015, 30(4): 280-294.
24 Abranches J, Chen YY, Burne RA. Characterization of Streptococcus mutans strains deficient in EⅡABMan of the sugar phosphotransferase system[J]. Appl Environ Microbiol, 2003, 69(8): 4760-4769.
25 Zeng L, Das S, Burne RA. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression[J]. J Bacteriol, 2010, 192(9): 2434-2444.
26 Moye ZD, Burne RA, Zeng L. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans [J]. Appl Environ Microbiol, 2014, 80(16): 5053-5067.
27 Burne RA, Schilling K, Bowen WH, et al. Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans [J]. J Bacteriol, 1987, 169(10): 4507-4517.
28 Zeng L, Wen ZT, Burne RA. A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans [J]. Mol Microbiol, 2006, 62(1): 187-200.
29 Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients[J]. Nat Rev Microbiol, 2008, 6(8): 613-624.
30 吴艳, 顾阳, 任聪, 等. 微生物分解代谢物控制蛋白CcpA的研究进展[J]. 生命科学, 2011, 23(9): 882-890.
Wu Y, Gu Y, Ren C, et al. Recent research on catabolite control protein A in microorganisms[J]. Chin Bulletin Life Sci, 2011, 23(9): 882-890.
31 Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans [J]. J Oral Microbiol, 2014, 6: 10.3402/jom.v6.24878.
32 Novichkov PS, Laikova ON, Novichkova ES, et al. RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes[J]. Nucleic Acids Res, 2010, 38(Database issue): D111-D118.
33 Kim HM, Waters A, Turner ME, et al. Regulation of cid and lrg expression by CcpA in Streptococcus mutans [J]. Microbiology (Reading), 2019, 165(1): 113-123.
34 Abranches J, Nascimento MM, Zeng L, et al. CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans [J]. J Bacteriol, 2008, 190(7): 2340-2349.
35 Spatafora G, Rohrer K, Barnard D, et al. A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo [J]. Infect Immun, 1995, 63(7): 2556-2563.
36 Zeng L, Burne RA. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans [J]. Mol Microbiol, 2008, 70(1): 197-208.
[1] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[2] 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346.
[3] 赵曼竹,宋锦璘. 时钟基因在牙齿发育中表达分布与调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 380-385.
[4] 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396.
[5] 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219.
[6] 刘程程, 丁一. 妊娠期常见口腔感染性疾病的临床诊疗和管理策略[J]. 国际口腔医学杂志, 2021, 48(6): 621-628.
[7] 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613.
[8] 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514.
[9] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620.
[10] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[11] 陈艳艳,彭显,周学东,程磊. 定量光导荧光技术在龋病及牙周疾病诊治中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 699-704.
[12] 王晓波,林世耀,李霞. 母亲与儿童龋病关系的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 469-474.
[13] 王静,王艳,王川东,黄睿洁,田燕,胡玮,邹静. 甘草及其提取物在防治口腔感染相关疾病中的应用[J]. 国际口腔医学杂志, 2018, 45(5): 546-552.
[14] 丁杰, 宋光泰. 微创技术在儿童龋病治疗中的应用[J]. 国际口腔医学杂志, 2018, 45(4): 473-479.
[15] 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .