国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (4): 404-411.doi: 10.7518/gjkq.2022063

• 论著 • 上一篇    下一篇

掺锌生物活性玻璃纳米颗粒对复合树脂力学性能影响的实验研究

王路明1,2(),曹潇1,仵琳悦1,李蕴聪1,雷波3,牛林1()   

  1. 1.西安交通大学陕西省颅颌面精准医学研究重点实验室 西安 710004
    2.西安医学院第二附属医院口腔科 西安 710038
    3.西安交通大学前沿科学技术研究院 西安 710054
  • 收稿日期:2021-12-10 修回日期:2022-03-06 出版日期:2022-07-01 发布日期:2022-06-28
  • 通讯作者: 牛林
  • 作者简介:王路明,主治医师,学士,Email:29968646@qq.com
  • 基金资助:
    陕西省自然科学基金(2020JM-414)

Effect of Zn-doped bioactive glass nanoparticles on the mechanical properties of modified composite resin

Wang Luming1,2(),Cao Xiao1,Wu Linyue1,Li Yuncong1,Lei Bo3,Niu Lin1()   

  1. 1.Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi’an Jiaotong University, Xi’an 710004, China
    2.Dept. of Stomatology, The Second Affilia-ted Hospital of Xi’an Medical University, Xi’an 710038, China
    3.Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
  • Received:2021-12-10 Revised:2022-03-06 Online:2022-07-01 Published:2022-06-28
  • Contact: Lin Niu
  • Supported by:
    National Science Basic Research Plan in Shaanxi Province of China(2020JM-414)

摘要:

目的 制备具有生物活性的掺锌活性玻璃纳米颗粒(Zn@BGN)并利用其对复合树脂进行改性,研究Zn@BGN对改性复合树脂力学性能的影响。方法 采用溶胶-凝胶模板法制备3种不同掺锌比例的Zn@BGN,通过体外生物活性实验筛选适宜的掺锌比例。将Zn@BGN分别以质量分数为10%、15%、20%的添加比例制备3组改性复合树脂实验组,以未改性复合树脂作为对照组,利用万能材料试验机及显微硬度仪测试挠曲强度(FS)、径向拉伸强度(DTS)、压缩强度和维氏硬度等力学性能。结果 溶胶-凝胶模板法制备的Zn@BGN呈现为较规则的直径约150 nm的球形颗粒,单分散性良好。当Zn@BGN中掺锌质量分数为1.6%时,生物活性良好。3组改性复合树脂实验组中,当Zn@BGN添加质量分数为10%和15%时,与对照组相比,力学性能的差异无统计学意义(P>0.05);而当Zn@BGN添加质量分数为20%时,FS和DTS明显低于对照组(P<0.05)。结论 溶胶-凝胶模板法可制备出粒径大小均匀、单分散性良好且生物活性优异的Zn@BGN。当Zn@BGN添加质量分数为15%时,改性复合树脂的力学性能不受影响。

关键词: 锌, 生物活性玻璃纳米颗粒, 溶胶-凝胶模板法, 复合树脂, 力学性能

Abstract:

Objective This study aimed to develop a novel composite resin modified using Zn-doped bioactive glass nanoparticles (Zn@BGN) with biological activity and to investigate the effect of Zn@BGN on the mechanical properties of the modified composite resin. Methods Three types of Zn@BGN with different ratios of zinc-doping ratios were synthesized using the sol-gel template method via the catalysis of dodecylamine. The optimum doping ratio of zinc was explored by performing a biological activity test in vitro. Three modified composite resin experimental groups were prepared by adding Zn@BGN with mass fractions of 10%, 15%, and 20%, and an unmodified composite resin served as the control group. The mechanical properties, such as flexural strength (FS), diametral tensile strength (DTS), compressive strength, and Vickers hardness, of the samples were tested using a universal material testing machine and a microhardness tester. ResultsZn@BGN prepared using the sol-gel template method showed relatively regular spherical particles with a diameter of approximately 150 nm and good monodispersity. In addition, it showed a good biological activity with 1.6%. No significant difference in mechanical properties was found between the modified groups and the control group when the ratios of Zn@BGN incorporation were 10% and 15% (P>0.05). However, the FS and DTS were significantly lower in the modified group with 20% incorporation than in the control group (P<0.05). Conclusion Zn@BGN featuring uniform particle size, good monodispersity, and excellent biological activity can be prepared using the sol-gel template method. Zn@BGN exerts no harmful effect on the mechanical properties of the modified composite resin with 15% incorporation.

Key words: zinc, bioactive glass nanoparticles, sol-gel template method, composite resin, mechanical properties

中图分类号: 

  • R 783.1

表 1

不同掺锌比例BGN各组分质量分数 (%)"

添加物质BGN1-Zn@BGN2-Zn@BGN6-Zn@BGN
ZnO01.62.66.4
CaO32.6323026.2
SiO258.258.258.258.2
P2O59.29.29.29.2

表 2

实验用复合树脂各组分的质量分数 (%)"

材料对照组实验组1实验组2实验组3
Bis-GMA、TEGDMA28282828
CQ1111
DMAEMA1111
无机填料70605550
Zn@BGN0101520

图1

掺锌生物活性玻璃纳米颗粒TEM照片A:BGN;B:1-Zn@BGN;C:2-Zn@BGN;D:6-Zn@BGN。"

图2

掺锌生物活性玻璃纳米颗粒EDS元素分析图A:BGN;B:1-Zn@BGN;C:2-Zn@BGN;D:6-Zn@BGN。"

图3

XRD图谱中HA特征峰图箭头示HA特征峰。"

图4

改性复合树脂力学性能A:FS;B:DTS;C:CS;D:HV。*:P<0.05。"

1 Muduroglu R, Ionescu AC, Del Fabbro M, et al. Distribution of adhesive layer in class Ⅱ composite re-sin restorations before/after interproximal matrix application[J]. J Dent, 2020, 103: 103494.
2 Takahashi Y, Imazato S, Russell RR, et al. Influence of resin monomers on growth of oral streptococci[J]. J Dent Res, 2004, 83(4): 302-306.
3 郭晓伟. 不同功能性聚氨酯的合成及其在牙本质-复合树脂粘接界面的应用[D]. 长春: 吉林大学, 2020.
Guo XW. Synthesis of different functional polyurethanes and their application at the dentin-composite resin bonding interface[D]. Changchun: Jilin University, 2020.
4 Gao Y, Liang KN, Weir MD, et al. Enamel remine-ralization via poly(amido amine) and adhesive resin containing calcium phosphate nanoparticles[J]. J Dent, 2020, 92: 103262.
5 王振铭, 叶玲. 生物活性组织工程材料在口腔颌面部骨修复中的应用研究进展[J]. 口腔生物医学, 2021,12(2): 71-76.
Wang ZM, Ye L. Engineering bioactive materials for oral and maxillofacial bone regeneration[J]. Oral Biomed, 2021,12(2): 71-76.
6 Hooshmand S, Mollazadeh S, Akrami N, et al. Me-soporous silica nanoparticles and mesoporous bioactive glasses for wound management: from skin regeneration to cancer therapy[J]. Materials (Basel), 2021, 14(12): 3337.
7 Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. J Microbiol Me-thods, 2003, 54(2): 177-182.
8 郑佳富. 生物活性玻璃/改性明胶复合支架的制备及性能研究[D]. 广州: 华南理工大学, 2018.
Zheng JF. Research on preparation and properties of bioactive glass/gelatin methacryloyl composites sca-ffolds[D]. Guangzhou: South China University of Te-chnology, 2018.
9 Rámila A, Vallet-Regí M. Static and dynamic in vitro study of a sol-gel glass bioactivity[J]. Biomate-rials, 2001, 22(16): 2301-2306.
10 Hench LL. The story of bioglass[J]. J Mater Sci Mater Med, 2006, 17(11): 967-978.
11 Jones JR. Review of bioactive glass: from hench to hybrids[J]. Acta Biomater, 2013, 9(1): 4457-4486.
12 马安博. 生物活性玻璃的研究现状及发展趋势[J]. 粘接, 2018, 39(2): 56-60.
Ma AB. Current situation and development trend of bioactive glass[J]. Adhesion, 2018, 39(2): 56-60.
13 Hench LL. Bioceramics: from concept to clinic[J]. J Am Ceram Soc, 1991, 74(7): 1487-1510.
14 Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses[J]. J Biomed Mater Res, 2002, 61(2): 301-311.
15 陈晓峰, 李玉莉, 赵娜如. 溶胶-凝胶生物活性玻璃的纳米结构分析研究[J]. 硅酸盐通报, 2007, 26(2): 247-251.
Chen XF, Li YL, Zhao NR. Nano-structure analysis of the sol-gel derived bioactive glasses[J]. Bull Chin Ceram Soc, 2007, 26(2): 247-251.
16 杨为中. A-W生物活性玻璃陶瓷的研究和发展[J]. 生物医学工程学杂志, 2003, 20(3): 541-545.
Yang WZ. Research and development of A-W bio-active glass ceramic[J]. J Biomed Eng, 2003, 20(3): 541-545.
17 Hench LL. Bioceramics[J]. J Am Ceram Soc, 1998, 81(7): 1705-1728.
18 Jones JR, Tsigkou O, Coates EE, et al. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells[J]. Biomaterials, 2007, 28(9): 1653-1663.
19 吴民行, 谢玉芬, 翟智皓, 等. 生物活性玻璃的制备与应用研究进展[J]. 人工晶体学报, 2019, 48(1): 137-143, 148.
Wu MH, Xie YF, Zhai ZH, et al. Research progress on preparation and applications of bioactive glasses[J]. J Synth Cryst, 2019, 48(1): 137-143, 148.
20 赵娜如. 生物活性玻璃微纳米粉体的模板仿生合成及其性能研究[D]. 广州: 华南理工大学, 2011.
Zhao NR. Biomimetic templating synthesis and pro-perties of the micro-nanoscale bioactive glasses[D]. Guangzhou: South China University of Technology, 2011.
21 胡庆. 用于牙髓损伤修复的新型微纳米生物活性玻璃的仿生制备及性能研究[D]. 广州: 华南理工大学, 2014.
Hu Q. Biomimetic preparation and characterization of the novel micro/nano-bioactive glasses for pulp repair[D]. Guangzhou: South China University of Technology, 2014.
22 梁绮明. 新型生物玻璃牙髓修复材料的制备与性能研究[D]. 广州: 华南理工大学, 2015.
Liang QM. Preparation and characterization of no-vel bioglass material for dental pulp repair[D]. Guangzhou: South China University of Technology, 2015.
23 Randolph LD, Palin WM, Leloup G, et al. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties[J]. Dent Mater, 2016, 32(12): 1586-1599.
24 甄风磊, 陈良, 黄从运. 牙科复合树脂中无机填料的研究进展[J]. 材料导报, 2016, 30(3): 29-32.
Zhen FL, Chen L, Huang CY. Research progress of inorganic fillers in dental composite resin[J]. Mater Rev, 2016, 30(3): 29-32.
25 Sideridou ID, Karabela MM. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites[J]. Dent Mater, 2009, 25(11): 1315-1324.
26 郑治, 黄伯云, 向其军, 等. 生物玻璃填充牙科复合树脂材料的制备及其性能[J]. 中南大学学报(自然科学版), 2009, 40(1): 94-98.
Zheng Z, Huang BY, Xiang QJ, et al. Preparation and property of bioglass ceramics filled dental resins[J]. J Central South Univ (Sci Technol), 2009, 40(1): 94-98.
27 Condon JR, Ferracane JL. Reduced polymerization stress through non-bonded nanofiller particles[J]. Bio-materials, 2002, 23(18): 3807-3815.
28 Mortazavi V, Atai M, Fathi M, et al. The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites[J]. Dent Res J (Isfahan), 2012, 9(3): 273-280.
29 辛东嵘. 湿热环境中环氧树脂力学性能和界面破坏机理的研究[D]. 广州: 华南理工大学, 2013.
Xin DR. Mechanical properties and the interface fai-lure mechanism of epoxy resin under hygrothermal condition[D]. Guangzhou: South China University of Technology, 2013.
30 Schulze KA, Marshall SJ, Gansky SA, et al. Color stability and hardness in dental composites after accelerated aging[J]. Dent Mater, 2003, 19(7): 612-619.
31 何柏林, 熊磊. 金属表面纳米化及其对材料性能影响的研究进展[J]. 兵器材料科学与工程, 2016, 39(2): 116-120.
He BL, Xiong L. Research progress in effect of me-tal surface nanocrystallization on material properties[J]. Ordnance Mater Sci Eng, 2016, 39(2): 116-120.
[1] 薛晶, 杨静. 基于循证实践的Ⅱ类洞复合树脂修复的操作要点[J]. 国际口腔医学杂志, 2023, 50(4): 375-387.
[2] 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419.
[3] 薛晶. 邻面成形系统的发展和临床应用[J]. 国际口腔医学杂志, 2020, 47(6): 621-626.
[4] 陈宏丽,杨敬,尹刚,李皓缘,乔燕. 锌指蛋白32在口腔鳞状细胞癌中的表达意义及对口腔鳞状细胞癌干细胞的影响[J]. 国际口腔医学杂志, 2019, 46(6): 631-639.
[5] 曾越, 夏海斌, 王敏. 纳米材料改良义齿基托力学性能及抗菌性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 455-458.
[6] 梁继超, 王芬, 张正华, 庞富升, 侯梅娟, 张凤英. 正畸分牙辅助邻面龋充填治疗的临床疗效观察[J]. 国际口腔医学杂志, 2017, 44(4): 440-444.
[7] 姚陈敏, 周丽群, 黄翠. 前牙磨耗牙色修复材料的选择[J]. 国际口腔医学杂志, 2017, 44(3): 363-367.
[8] 武芳艳,李明菲,孟翔峰. 铸瓷全冠修复体树脂粘接效果的3年临床评估[J]. 国际口腔医学杂志, 2016, 43(6): 658-660.
[9] 方力 刘源 杨燃 邹静. 树脂充填前后唾液中变异链球菌的变化[J]. 国际口腔医学杂志, 2015, 42(1): 28-30.
[10] 王东杰1 吴兵2 陈晓红1. 光固化复合树脂前牙微创美学修复的临床体会[J]. 国际口腔医学杂志, 2014, 41(2): 137-139.
[11] 王素苹 程磊 周学东. 复合树脂纳米抗菌成分的研究进展[J]. 国际口腔医学杂志, 2013, 40(6): 750-753.
[12] 吴幸晨 朱亚琴. 自调节根管锉的特性和临床应用评价[J]. 国际口腔医学杂志, 2013, 40(6): 764-768.
[13] 邱海燕1 张倩2. 纤维增强复合树脂粘接桥的研究进展[J]. 国际口腔医学杂志, 2013, 40(3): 395-398.
[14] 叶韵瑶综述 林正梅审校. 低聚合收缩复合树脂的性能及其应用[J]. 国际口腔医学杂志, 2012, 39(4): 506-509.
[15] 苏伟珠1 王浙君1 撒悦1综述 王贻宁1,2审校. 漂白剂对复合树脂的影响[J]. 国际口腔医学杂志, 2012, 39(4): 537-539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .