国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 362-366.doi: 10.7518/gjkq.2022037

• 综述 • 上一篇    下一篇

功能载荷下牙移动测量方法的研究进展

赵喆(),王富,郑秀丽,安娜,陈吉华()   

  1. 军事口腔医学国家重点实验室 口腔疾病国家临床医学研究中心 陕西省口腔医学重点实验室空军军医大学口腔医院修复科 西安 710032
  • 收稿日期:2021-08-15 修回日期:2021-12-16 出版日期:2022-05-01 发布日期:2022-05-09
  • 通讯作者: 陈吉华
  • 作者简介:赵喆,硕士,Email:17839927278@163.com
  • 基金资助:
    国家自然科学基金(82071169);国家口腔疾病临床医学研究中心专项课题(LCB202005)

Research progress on measuring methods of tooth movement under functional load

Zhao Zhe(),Wang Fu,Zheng Xiuli,An Na,Chen Jihua.()   

  1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Di-seases & Shaanxi Key Laboratory of Oral Diseases & Dept. of Prosthodontics, School of Stomatology, Air Force Military Medical University, Xi’an 710032, China
  • Received:2021-08-15 Revised:2021-12-16 Online:2022-05-01 Published:2022-05-09
  • Contact: Jihua. Chen
  • Supported by:
    National Natural Science Foundation of China(82071169);Project National Clinical Research Center for Oral Diseases(LCB202005)

摘要:

功能载荷下的牙移动是咀嚼过程中的一种基本生理特征,在维持牙弓的受力平衡,避免食物嵌塞和牙折的发生等方面均起着重要作用。近年来随着研究的持续进展,新技术、新方法不断应用,功能载荷下牙移动的研究不断深入,其测量方法也在向高精度和数字化的方向靠拢。本文回顾了近年来的相关文献,从功能载荷下牙移动的生理基础、影响因素、测量方式和临床意义几个方面展开综述,以期为客观全面的描述咀嚼状态下的牙齿移动情况提供参考。

关键词: 牙移动, 功能载荷, 数字化技术, 测量方法

Abstract:

Tooth movement under functional load is a basic physiological phenomenon in the process of mastication, which plays an important role in maintaining the force balance of dental arch and avoiding food impaction and tooth fracture. In recent years, with the continuous progress of research and the continuous application of new technologies and methods, the research on tooth movement under functional load is deepening, and its measurement method is moving closer to the direction of high precision and digitalisation. This paper reviews the related literature in recent years on the physiological basis, influencing factors, measurement methods and clinical significance of tooth movement under functional load to provide reference for an objective and comprehensive description of tooth movement under mastication.

Key words: tooth movement, functional load, digital technique, measurement

中图分类号: 

  • R 783.5
1 Keilig L, Drolshagen M, Tran KL, et al. In vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament[J]. Ann Anat, 2016, 206: 80-88.
2 Naveh GR, Lev-Tov Chattah N, Zaslansky P, et al. Tooth-PDL-bone complex: response to compressive loads encountered during mastication-a review[J]. Arch Oral Biol, 2012, 57(12): 1575-1584.
3 Pei DD, Hu XY, Jin CX, et al. Energy storage and dissipation of human periodontal ligament during mastication movement[J]. ACS Biomater Sci Eng, 2018, 4(12): 4028-4035.
4 de Jong T, Bakker AD, Everts V, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Periodontal Res, 2017, 52(6): 965-974.
5 Dorow C, Krstin N, Sander FG. Experiments to determine the material properties of the periodontal ligament[J]. J Orofac Orthop, 2002, 63(2): 94-104.
6 Sinescu C, Duma VF, Dodenciu D, et al. Mechanical properties of the periodontal system and of dental constructs deduced from the free response of the tooth[J]. J Healthc Eng, 2018, 2018:4609264.
7 Ben-Zvi Y, Maria R, Pierantoni M, et al. Response of the tooth-periodontal ligament-bone complex to load: a microCT study of the minipig molar[J]. J Struct Biol, 2019, 205(2): 155-162.
8 Morgenthal A, Zaslansky P, Fleck C. Cementum thickening leads to lower whole tooth mobility and reduced root stresses: an in silico study on aging effects during mastication[J]. J Struct Biol, 2021, 213(2): 107726.
9 Jang AT, Merkle AP, Fahey KP, et al. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints[J]. Bone, 2015, 81: 196-207.
10 Ishihara H. Influence of occlusal contacts on tooth displacement[J]. Kokubyo Gakkai Zasshi, 2000, 67(4): 310-321.
11 Nikolaus A, Currey JD, Lindtner T, et al. Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study[J]. J Mech Behav Biomed Mater, 2017, 67: 61-73.
12 Kim YG, Lee SM, Bae S, et al. Effect of aging on homeostasis in the soft tissue of the periodontium: a narrative review[J]. J Pers Med, 2021, 11(1): 58.
13 Wu JL, Liu YF, Li BX, et al. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar bas-ed on biomechanical responses of periodontal ligaments: a case study[J]. Clin Oral Investig, 2021, 25(3): 1569-1577.
14 Bouton A, Simon Y, Goussard F, et al. New finite element study protocol: clinical simulation of ortho-dontic tooth movement[J]. Int Orthod, 2017, 15(2): 165-179.
15 Picton DC. Tilting movements of teeth during biting[J]. Arch Oral Biol, 1962, 7: 151-159.
16 Behrend DA. A method of studying patterns of tooth displacement in simulated chewing cycles in man[J]. Arch Oral Biol, 1974, 19(1): 23-27.
17 Siebert G. Recent results concerning physiological tooth movement and anterior guidance[J]. J Oral Rehabil, 1981, 8(6): 479-493.
18 Parfitt GJ. Measurement of the physiological mobility of individual teeth in an axial direction[J]. J Dent Res, 1960, 39: 608-618.
19 Salamati A, Chen J, Herring SW, et al. Functional tooth mobility in young pigs[J]. J Biomech, 2020, 104: 109716.
20 Boldt J, Knapp W, Proff P, et al. Measurement of tooth and implant mobility under physiological loading conditions[J]. Ann Anat, 2012, 194(2): 185-189.
21 Yomoda S, Hisano M, Amemiya K, et al. The interrelationship between bolus breakdown, mandibular first molar displacement and jaw movement during mastication[J]. J Oral Rehabil, 2004, 31(2): 99-109.
22 Provatidis CG. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Finite element method[J]. Med Eng Phys, 2000, 22(5): 359-370.
23 Karimi A, Razaghi R, Biglari H, et al. Finite element modeling of the periodontal ligament under a realistic kinetic loading of the jaw system[J]. Saudi Dent J, 2020, 32(7): 349-356.
24 Kasahara K. Observations of interproximal contact relationship during function[J]. Kokubyo Gakkai Zasshi, 1999, 66(4): 370-381.
25 李琳琳, 陈虎, 李伟伟, 等. 正常𬌗力咬合状态下后牙移动的口内三维扫描测量和分析[J].中华口腔医学杂志, 2020, 55(10): 743-749.
Li LL, Chen H, Li WW, et al. Investigation of posterior teeth displacement under normal bite force by an intraoral scanner[J]. Chin J Stomatol, 2020, 55(10): 743-749
26 曹悦, 陈俊锴, 赵一姣, 等. 口内三维扫描技术临床应用精度的研究进展[J].中华口腔医学杂志, 2020, 55(3): 201-205.
Cao Y, Chen JK, Zhao YJ, et al. Research and deve-lopment of clinical application accuracy of intraoral three-dimensional scanning technology[J]. Chin J Sto-matol, 2020, 55(3): 201-205.
27 Wu JL, Liu YF, Li BX, et al. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar based on biomechanical responses of periodontal ligaments: a case study[J]. Clin Oral Investig, 2021, 25(3): 1569-1577.
28 Keilig L, Goedecke J, Bourauel C, et al. Increased tooth mobility after fixed orthodontic appliance treatment can be selectively utilized for case refinement via positioner therapy-a pilot study[J]. BMC Oral Health, 2020, 20(1): 114.
29 Gupta M, Madhok K, Kulshrestha R, et al. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements-a 3D FEM study[J]. J Oral Biol Craniofac Res, 2020, 10(4): 758-763.
30 Jiang N, Guo WH, Chen M, et al. Periodontal ligament and alveolar bone in health and adaptation: tooth movement[J]. Front Oral Biol, 2016, 18: 1-8.
31 Cattaneo PM, Cornelis MA. Orthodontic tooth movement studied by finite element analysis: an update. What can we learn from these simulations[J]. Curr Osteoporos Rep, 2021, 19(2): 175-181.
32 卫敏捷, 郭巧玲, 刘艳梅, 等. 种植固定义齿与天然邻牙食物嵌塞的影响因素分析[J]. 中华老年口腔医学杂志, 2021, 19(1): 31-34.
Wei MJ, Guo QL, Liu YM, et al. Analysis of influencing factors of food impaction between implant fixed denture and natural adjacent tooth[J]. Chin J Geriatr Dent, 2021, 19(1): 31-34.
33 Robinson D, Aguilar L, Gatti A, et al. Load response of the natural tooth and dental implant: a comparative biomechanics study[J]. J Adv Prosthodont, 2019, 11(3): 169-178.
34 Dörfer CE, von Bethlenfalvy ER, Staehle HJ, et al. Factors influencing proximal dental contact strengths [J]. Eur J Oral Sci, 2000, 108(5): 368-377.
35 王茂夏, 戴冠宇, 孟玉坤. 垂直型食物嵌塞的机制探究[J]. 国际口腔医学杂志, 2018, 45(2): 245-248.
Wang MX, Dai GY, Meng YK. Mechanism of vertical food impaction[J]. Int J Stomatol, 2018, 45(2): 245-248.
36 黄敏, 罗云, 王敏. 相邻牙间的邻面接触与食物嵌塞的关系[J]. 国际口腔医学杂志, 2016, 43(3): 303-308.
Huang M, Luo Y, Wang M. Relationship between the interproximal interface of adjacent teeth and food impaction[J]. Int J Stomatol, 2016, 43(3): 303-308.
[1] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[2] 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627-634.
[3] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[4] 杨亚,陈鹏,戴红卫,张林. 大鼠正畸牙移动过程中转化生长因子-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞的表达变化[J]. 国际口腔医学杂志, 2019, 46(3): 270-276.
[5] 黄满英,付云. 牙龈生物型的测量方法[J]. 国际口腔医学杂志, 2019, 46(2): 171-176.
[6] 王通,万乾炳. 牙根表面积测量方法的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 490-494.
[7] 华小川 杨苹 周治 刘晓君. 骨钙素与低强度激光对正畸牙移动速度的影响研究[J]. 国际口腔医学杂志, 2015, 42(1): 16-18.
[8] 易颖煜 赵宁 沈刚. 牙周组织老龄化变化及其对正畸牙移动的影响[J]. 国际口腔医学杂志, 2014, 41(4): 492-496.
[9] 颜子淇1 何武林2 邹淑娟1. 低强度激光促进正畸治疗牙移动的研究进展[J]. 国际口腔医学杂志, 2014, 41(2): 169-171.
[10] 徐晖综述 赵青 白丁审校. 错畸形患者牙周炎症消除后的正畸治疗[J]. 国际口腔医学杂志, 2012, 39(5): 624-627.
[11] 包幸福综述 胡敏审校. 正畸牙移动中骨吸收机制及其调控的研究进展[J]. 国际口腔医学杂志, 2012, 39(2): 187-189.
[12] 彭鹏综述 蔡萍审校. 生长因子在正畸牙移动牙周组织改建中的作用[J]. 国际口腔医学杂志, 2012, 39(2): 252-256.
[13] 尹林玲综述 房兵审校. 牵引成骨技术在正畸牙移动中应用的研究进展[J]. 国际口腔医学杂志, 2010, 37(02): 229-229~232.
[14] 伍颖颖综述 宫苹审校. 种植体初期稳定性的研究现状与进展[J]. 国际口腔医学杂志, 2009, 36(6): 726-728.
[15] 许顼杰, 吴丽萍. 精氨酸与NG-硝基-精氨酸甲酯对大鼠正畸牙移动时诱导型一氧化氮合酶的影响[J]. 国际口腔医学杂志, 2009, 36(4): 379-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .