国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (1): 12-18.doi: 10.7518/gjkq.2022015

• 材料学专栏 • 上一篇    下一篇

光响应水凝胶在生物医学领域应用的研究进展

梁屹(),裴锡波,万乾炳()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2021-04-12 修回日期:2021-09-13 出版日期:2022-01-01 发布日期:2022-01-07
  • 通讯作者: 万乾炳
  • 作者简介:梁屹,硕士,Email: 821868670@qq.com
  • 基金资助:
    国家自然科学基金(81970984)

Research progress on the biomedical applications of photosensitive hydrogels

Liang Yi(),Pei Xibo,Wan Qianbing()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-04-12 Revised:2021-09-13 Online:2022-01-01 Published:2022-01-07
  • Contact: Qianbing Wan
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81970984)

摘要:

光响应水凝胶是对光响应的水膨胀性三维网状高分子聚合物。光响应水凝胶拥有类似天然细胞外基质的特性,通过光刺激可对其进行无接触的远程操纵和高精度的时空控制,因此在生物支架,药物递送,三维细胞培养及口腔医学等领域得到广泛的研究和应用。本文结合国内外文献,针对光响应水凝胶在生物医学领域的应用研究进展作一综述,同时总结光响应水凝胶目前所面临的挑战,并对其未来的发展方向进行展望。

关键词: 光响应水凝胶, 生物支架, 药物递送, 细胞封装

Abstract:

Photosensitive hydrogels are water swollen three-dimensional polymers, which are responsive to light. Photosensitive hydrogels have properties similar to natural extracellular matrix. They can be operated remotely without contact and spatiotemporally controlled with high precision by light stimulation. Accordingly, they are widely studied and applied in the fields of biological scaffold, drug delivery, three-dimensional cell culture and stomatology. This study reviews the applications of photosensitive hydrogels in biomedical fields based on domestic and foreign literature. Their potential for development and potential future challenges are also outlined.

Key words: photosensitive hydrogel, biological scaffold, drug delivery, cell encapsulation

[1] Huang QT, Zou YJ, Arno MC, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells[J]. Chem Soc Rev, 2017,46(20):6255-6275.
[2] 韩超越, 候冰娜, 郑泽邻, 等. 功能高分子材料的研究进展[J]. 材料工程, 2021,49(6):1-12.
Han CY, Hou BN, Zheng ZL, et al. Research pro-gress in functional polymer materials[J]. J Mater Eng, 2021,49(6):1-12.
[3] Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels[J]. Adv Mater, 2019,31:e1807333.
[4] Ji WH, Wu Q, Han XS, et al. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications[J]. Sci China Life Sci, 2020,63(12):1813-1828.
[5] Xin SJ, Chimene D, Garza JE, et al. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting[J]. Biomater Sci, 2019,7(3):1179-1187.
[6] Doi T, Kashida H, Asanuma H. Efficiency of [2+2] photodimerization of various stilbene derivatives wi-thin the DNA duplex scaffold[J]. Org Biomol Chem, 2015,13(15):4430-4437.
[7] Lunzer M, Shi LY, Andriotis OG, et al. A modular approach to sensitized two-photon patterning of photodegradable hydrogels[J]. Angew Chem Int Ed En-gl, 2018,57(46):15122-15127.
[8] Fleming CL, Li SM, Grøtli M, et al. Shining new light on the spiropyran photoswitch: a photocage de-cides between Cis- trans or spiro-merocyanine isome-rization[J]. J Am Chem Soc, 2018,140(43):14069-14072.
[9] Homma K, Chang AC, Yamamoto S, et al. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling[J]. Acta Biomater, 2021,132:103-113.
[10] Li C, Iscen A, Palmer LC, et al. Light-driven expansion of spiropyran hydrogels[J]. J Am Chem Soc, 2020,142(18):8447-8453.
[11] Xie MJ, Yu K, Sun Y, et al. Protocols of 3D bioprin-ting of gelatin methacryloyl hydrogel based bioinks[J]. J Vis Exp, 2019, ( 154). doi: 10.3791/60545.
[12] 颜燕宏, 祁胜财, 彭前, 等. 介孔二氧化硅载甲硝唑复合水凝胶体外抗菌性及牙髓细胞黏附研究[J]. 临床口腔医学杂志, 2021,37(4):200-204.
Yan YH, Qi SC, Peng Q, et al. Antibacterial and pulp cell adhesion of mesoporous silica-loaded me-tronidazole composite hydrogel in vitro[J]. J Clin S-tomatol, 2021,37(4):200-204.
[13] Cidonio G, Alcala-Orozco CR, Lim KS, et al. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks[J]. Biofabrication, 2019,11(3):035027.
[14] Zhu SA, Chen PF, Chen Y, et al. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects[J]. Am J Sports Med, 2020,48(11):2808-2818.
[15] Anil Kumar S, Alonzo M, Allen SC, et al. A visible light-cross-linkable, fibrin-gelatin-based bioprinted construct with human cardiomyocytes and fibrobla-sts[J]. ACS Biomater Sci Eng, 2019,5(9):4551-4563.
[16] Xu CC, Lee W, Dai GH, et al. Highly elastic biodegradable single-network hydrogel for cell printing[J]. ACS Appl Mater Interfaces, 2018,10(12):9969-9979.
[17] Cai ZW, Gan YB, Bao CY, et al. Photosensitive hydrogel creates favorable biologic niches to promote spinal cord injury repair[J]. Adv Healthc Mater, 2019,8(13):e1900013.
[18] Li Y, San BH, Kessler JL, et al. Non-covalent photo-patterning of gelatin matrices using caged collagen mimetic peptides[J]. Macromol Biosci, 2015,15(1):52-62.
[19] Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. Hydrogels as potential nano-, micro-and macro-scale systems for controlled drug delivery[J]. Materials (Basel), 2020,13(1):E188.
[20] 杨梅, 姚钧健, 彭雅仪, 等. 智能型高分子水凝胶在药物控释中的应用研究进展[J]. 当代化工研究, 2021(6):3-9.
Yang M, Yao JJ, Peng YY, et al. Research progress in the application of intelligent polymer hydrogels in drug controlled release[J]. Modern Chem Res, 2021 (6):3-9.
[21] Clasky AJ, Watchorn JD, Chen PZ, et al. From prevention to diagnosis and treatment: biomedical applications of metal nanoparticle-hydrogel composites[J]. Acta Biomater, 2021,122:1-25.
[22] Sun ZY, Song CJ, Wang C, et al. Hydrogel-based controlled drug delivery for cancer treatment: a review[J]. Mol Pharm, 2020,17(2):373-391.
[23] 冯茜, 张琨雨, 李睿, 等. 可注射水凝胶及其在再生医学领域的应用[J]. 高分子学报, 2021,52(1):1-15.
Feng Q, Zhang KY, Li R, et al. Injectable hydro-gels for regenerative medicine[J]. Acta Polymer Sin, 2021,52(1):1-15.
[24] 李星, 颜世峰, 简宇航, 等. 聚L-谷氨酸可注射水凝胶的制备及性能[J]. 高等学校化学学报, 2017,38(5):872-879.
Li X, Yan SF, Jian YH, et al. Synjournal and characterization of injectable poly(L-glutamic acid) hydrogels[J]. Chem J Chin Univ, 2017,38(5):872-879.
[25] Wang XY, Wang CP, Zhang Q, et al. Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery[J]. Chem Commun (Camb), 2016,52(5):978-981.
[26] Xu YJ, Shi Z, Shi XY, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synjournal and applications[J]. Nanoscale, 2019,11(31):14491-14527.
[27] Yin T, Long LY, Tang X, et al. Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure enginee-ring and surface modulation[J]. Adv Sci (Weinh), 2020,7(19):2001431.
[28] Qiu M, Wang D, Liang WY, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy[J]. Proc Natl Acad Sci U S A, 2018,115(3):501-506.
[29] Zheng Z, Hu JJ, Wang H, et al. Dynamic softening or stiffening a supramolecular hydrogel by ultraviolet or near-infrared light[J]. ACS Appl Mater Interfaces, 2017,9(29):24511-24517.
[30] Hu J, Chen Y, Li Y, et al. A thermo-degradable hydrogel with light-tunable degradation and drug release[J]. Biomaterials, 2017,112:133-140.
[31] Wang SQ, Zheng H, Zhou L, et al. Injectable redox and light responsive MnO2 hybrid hydrogel for simultaneous melanoma therapy and multidrug-resistant bacteria-infected wound healing[J]. Biomate-rials, 2020,260:120314.
[32] Grim JC, Brown TE, Aguado BA, et al. A reversible and repeatable thiol-ene bioconjugation for dynamic patterning of signaling proteins in hydrogels[J]. ACS Cent Sci, 2018,4(7):909-916.
[33] Jiang BJ, Liu XT, Yang C, et al. Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly[J]. Sci Adv, 2020,6(41): eabc4824.
[34] Huang Y, Li XF, Lu ZT, et al. Nanofiber-reinforced bulk hydrogel: preparation and structural, mechanical, and biological properties[J]. J Mater Chem B, 2020,8(42):9794-9803.
[35] Wu RWK, Chu ESM, Yuen JWM, et al. Comparative study of FosPeg ® photodynamic effect on nasopharyngeal carcinoma cells in 2D and 3D models [J]. J Photochem Photobiol B, 2020,210:111987.
[36] 樊全宝, 罗惠娜, 王丙云, 等. 低氧培养犬脂肪间充质干细胞的生物学特性[J]. 中国组织工程研究, 2021,25(7):1002-1007.
Fan QB, Luo HN, Wang BY, et al. Biological cha-racteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia[J]. Chin J Tissue Eng Res, 2021,25(7):1002-1007.
[37] Cosgrove BD, Loebel C, Driscoll TP, et al. Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments[J]. Biomaterials, 2021,270:120662.
[38] Lee IN, Dobre O, Richards D, et al. Photoresponsive hydrogels with photoswitchable mechanical pro-perties allow time-resolved analysis of cellular responses to matrix stiffening[J]. ACS Appl Mater Interfaces, 2018,10(9):7765-7776.
[39] Crosby CO, Hillsley A, Kumar S, et al. Phototuna-ble interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors[J]. Acta Biomater, 2021,122:133-144.
[40] Seeto WJ, Tian Y, Pradhan S, et al. Rapid production of cell-laden microspheres using a flexible microfluidic encapsulation platform[J]. Small, 2019,15(47):e1902058.
[41] He QL, Liao YG, Zhang JW, et al. “all-in-one” gel system for whole procedure of stem-cell amplification and tissue engineering[J]. Small, 2020,16(16):e1906539.
[42] Zheng ZQ, Wang HP, Li JN, et al. 3D construction of shape-controllable tissues through self-bonding of multicellular microcapsules[J]. ACS Appl Mater Interfaces, 2019,11(26):22950-22961.
[43] Ribeiro JS, Daghrery A, Dubey N, et al. Hybrid antimicrobial hydrogel as injectable therapeutics for o-ral infection ablation[J]. Biomacromolecules, 2020,21(9):3945-3956.
[44] Ma YF, Ji Y, Zhong T, et al. Bioprinting-based PDL-SC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels[J]. ACS Biomater Sci Eng, 2017,3(12):3534-3545.
[1] 郭天奇,周延民,赵静辉,储顺礼,孙千月,罗雯静,马珊珊. 富血小板血纤蛋白与其他生物材料联合用于牙周组织修复[J]. 国际口腔医学杂志, 2015, 42(2): 231-236.
[2] 包霆威综述 王慧明审校. 智能化组织工程支架材料研究进展[J]. 国际口腔医学杂志, 2008, 35(6): 669-669~671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .