国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (1): 79-84.doi: 10.7518/gjkq.2022013

• 综述 • 上一篇    下一篇

全锆冠机械性能的研究现状及与临床应用的关系

杨光美(),王剑()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2021-03-03 修回日期:2021-10-18 出版日期:2022-01-01 发布日期:2022-01-07
  • 通讯作者: 王剑
  • 作者简介:杨光美,硕士,Email: 2320732302@qq.com

Mechanical properties of monolithic zirconia crowns and its relationship with clinical application

Yang Guangmei(),Wang Jian()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-03-03 Revised:2021-10-18 Online:2022-01-01 Published:2022-01-07
  • Contact: Jian Wang

摘要:

临床中可供全锆冠修复选择的氧化锆材料种类较多。传统全锆冠以机械性能见长,而透明氧化锆冠的美学性能更佳、机械性能相对较弱。材料选定后,临床操作和修复后口内使用均会对全锆冠的机械性能产生影响。本文从临床角度出发,对修复设计、加工制作、试戴、粘接和口内使用的全流程中如何结合全锆冠机械性能进行临床决策,以及临床过程如何对其机械性能产生影响等问题进行总结及探讨,为全锆冠的临床应用和研究提供参考。

关键词: 全解剖式氧化锆全冠, 机械性能, 氧化锆, 固定修复

Abstract:

Many types of zirconia materials are available for monolithic zirconia crown restoration in clinic. Traditional monolithic zirconia crowns have advantageous mechanical properties, while transparent zirconia crowns have favourable aesthetics but poor mechanical properties. After selecting the material, the mechanical properties of monolithic zirconia crowns are affected by clinical operation and intraoral use. With a whole clinical perspective including design, fabrication, try-on, bonding and intraoral use, this review intends to summarise and discuss problems such as making clinical decisions with the mechanical properties of monolithic zirconia crowns and determining the effects of clinical procedure on the mechanical properties to provide reference for the clinical application and research of monolithic zirconia crowns.

Key words: monolithic zirconia crowns, mechanical properties, zirconia, fixed prosthesis

[1] Bankoğlu Güngör M, Karakoca Nemli S. Fracture resistance of CAD-CAM monolithic ceramic and veneered zirconia molar crowns after aging in a mastication simulator[J]. J Prosthet Dent, 2018,119(3):473-480.
[2] 王秋月, 冯驭驰. 椅旁快速烧结条件下3种氧化锆机械性能的比较[J]. 中国组织工程研究, 2019,23(6):877-882.
Wang QY, Feng YC. Mechanical properties of three kinds of zirconia ceramics under chairside rapid sintering[J]. Clin J Tissue Eng Res, 2019,23(6):877-882.
[3] Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications[J]. Dent Mater, 2018,34(6):879-890.
[4] Jerman E, Lümkemann N, Eichberger M, et al. Evaluation of translucency, Marten’s hardness, biaxial flexural strength and fracture toughness of 3Y-TZP, 4Y-TZP and 5Y-TZP materials[J]. Dent Mater, 2021,37(2):212-222.
[5] Shen J, Xie H, Wu X, et al. Evaluation of the effect of low-temperature degradation on the translucency and mechanical properties of ultra-transparent 5Y-TZP ceramics[J]. Ceram Int, 2020,46(1):553-559.
[6] Shahmoradi M, Wan BY, Zhang ZP, et al. Monoli-thic crowns fracture analysis: the effect of material properties, cusp angle and crown thickness[J]. Dent Mater, 2020,36(8):1038-1051.
[7] Zhuang YX, Zhu ZY, Jiao T, et al. Effect of aging time and thickness on low-temperature degradation of dental zirconia[J]. J Prosthodont, 2019,28(1):e404-e410.
[8] Yin RZ, Lee MH, Bae TS, et al. Effect of finishing condition on fracture strength of monolithic zirconia crowns[J]. Dent Mater J, 2019,38(2):203-210.
[9] Nakamura K, Harada A, Inagaki R, et al. Fracture resistance of monolithic zirconia molar crowns with reduced thickness[J]. Acta Odontol Scand, 2015,73(8):602-608.
[10] Almansour HM, Alqahtani F. The effect of in vitro aging and fatigue on the flexural strength of monolithic high-translucency zirconia restorations[J]. J Contemp Dent Pract, 2018,19(7):867-873.
[11] Stawarczyk B, Ozcan M, Hallmann L, et al. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio[J]. Clin Oral Investig, 2013,17(1):269-274.
[12] Juntavee N, Attashu S. Effect of different sintering process on flexural strength of translucency monolithic zirconia[J]. J Clin Exp Dent, 2018,10(8):e821-e830.
[13] Jansen JU, Lümkemann N, Letz I, et al. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials[J]. J Prosthet Dent, 2019,122(4):396-403.
[14] Li L, Qiu Y, Si W. Super-speed sintered dental zirconia for chair-side one-visit application[J]. Austin J Nutri Food Sci, 2018,6(2):1105.
[15] Lai X, Si WJ, Jiang DY, et al. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia[J]. J Dent, 2017,66:23-31.
[16] Li Z, Zheng K, Liao W, et al. Tribological properties of surface topography in ultrasonic vibrationassisted grinding of zirconia ceramics[J]. Proc Inst Mech Eng C J Mech Eng Sci, 2017,231(1):1-13.
[17] Chavali R, Lin CP, Lawson NC. Evaluation of different polishing systems and speeds for dental zirconia[J]. J Prosthodont, 2017,26(5):410-418.
[18] Tang ZY, Zhao XY, Hara AT. Surface characterization of monolithic zirconia following treatment with different polishing techniques[J]. Mater Sci Forum, 2020,980:176-186.
[19] Al-Haj Husain N, Camilleri J, Özcan M. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: an evaluation with XPS and XRD a-nalysis[J]. J Mech Behav Biomed Mater, 2016,64:104-112.
[20] Jum'ah AA, Brunton PA, Li KC, et al. Simulated clinical adjustment and intra-oral polishing of two translucent, monolithic zirconia dental ceramics: an in vitro investigation of surface roughness[J]. J Dent, 2020,101:103447.
[21] Vila-Nova TEL, Gurgel de Carvalho IH, Moura D-MD, et al. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural streng-th of ultra-translucent ZrO2 ceramic[J]. Dent Mater, 2020,36(4):e126-e139.
[22] Selvaraj U, Koli DK, Jain V, et al. Evaluation of the wear of glazed and polished zirconia crowns and the opposing natural teeth: a clinical pilot study[J]. J Prosthet Dent, 2021,126(1):52-57.
[23] Stawarczyk B, Frevert K, Ender A, et al. Comparison of four monolithic zirconia materials with conventional ones: contrast ratio, grain size, four-point flexural strength and two-body wear[J]. J Mech Behav Biomed Mater, 2016,59:128-138.
[24] Cotič J, Jevnikar P, Kocjan A, et al. Complexity of the relationships between the sintering-temperature-dependent grain size, airborne-particle abrasion, a-geing and strength of 3Y-TZP ceramics[J]. Dent Mater, 2016,32(4):510-518.
[25] Zhang XY, Liang W, Jiang F, et al. Effects of air-abrasion pressure on mechanical and bonding properties of translucent zirconia[J]. Clin Oral Investig, 2021,25(4):1979-1988.
[26] Ha SR. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type[J]. J Adv Prosthodont, 2015,7(6):475-483.
[27] Tsuyuki Y, Sato T, Nomoto S, et al. Effect of occlusal groove on abutment, crown thickness, and cement-type on fracture load of monolithic zirconia crowns[J]. Dent Mater J, 2018,37(5):843-850.
[28] Lawson NC, Jurado CA, Huang CT, et al. Effect of surface treatment and cement on fracture load of traditional zirconia (3Y), translucent zirconia (5Y), and lithium disilicate crowns[J]. J Prosthodont, 2019,28(6):659-665.
[29] Kim SH, Choi YS. Changes in properties of monolithic and conventional zirconia during aging process[J]. Mech Mater, 2019,138(2019):17.
[30] Wu ZK, Li N, Yan JZ, et al. Effect of hydrothermal aging on the phase stability, microstructure and mechanical properties of dental 3Y-TZP ceramics[J]. Appl Mech Mater, 2014,529:251-255.
[31] Wei C, Gong X, Xie C, et al. In vitro cyclic fatigue and hydrothermal aging lifetime assessment of yttria-stabilized zirconia dental ceramics[J]. J Eur Ceram Soci, 2020,40(13):4647-4654.
[32] 万乾炳. 口腔氧化锆修复材料分代之我见[J]. 国际口腔医学杂志, 2021,48(2):125-128.
Wan QB. My opinion on the generations of dental zirconia materials[J]. Int J Stomatol, 2021,48(2):125-128.
[33] Esquivel-Upshaw JF, Kim MJ, Hsu SM, et al. Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns[J]. J Dent, 2018,68:19-27.
[34] Lohbauer U, Reich S. Antagonist wear of monolithic zirconia crowns after 2 years[J]. Clin Oral Investig, 2017,21(4):1165-1172.
[35] Zhang F, Spies BC, Vleugels J, et al. High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly[J]. Dent Mater, 2019,35(12):1776-1790.
[36] Kaizer MR, Bano S, Borba M, et al. Wear behavior of graded glass/zirconia crowns and their antagonists[J]. J Dent Res, 2019,98(4):437-442.
[37] Vardhaman S, Borba M, Kaizer MR, et al. Wear behavior and microstructural characterization of translucent multilayer zirconia[J]. Dent Mater, 2020,36(11):1407-1417.
[1] 曾芳,王剑. 全锆冠美学修复效果的影响因素[J]. 国际口腔医学杂志, 2022, 49(2): 233-238.
[2] 黎敏,华成舸,蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490.
[3] 万乾炳. 口腔氧化锆修复材料分代之我见[J]. 国际口腔医学杂志, 2021, 48(2): 125-128.
[4] 付栩楠,谢志刚. 种植固定修复中基台机械并发症的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 571-577.
[5] 万乾炳. 氧化锆基台的研究现状和临床应用效果[J]. 国际口腔医学杂志, 2018, 45(1): 1-8.
[6] 万乾炳. 关于全锆冠的几个问题[J]. 国际口腔医学杂志, 2018, 45(1): 9-13.
[7] 李学盛, 李鸿波. 固定修复体适合性评价方法的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 726-730.
[8] 张雅蓉, 刘洋, 张玲, 于海洋. 不同切端设计的上前牙瓷贴面受载能力的定量研究[J]. 国际口腔医学杂志, 2017, 44(3): 301-303.
[9] 李燕玲, 王劲茗. 计算机辅助设计与制作钛支架在无牙颌患者种植固定修复中的应用现状[J]. 国际口腔医学杂志, 2017, 44(3): 344-349.
[10] 姚陈敏, 周丽群, 黄翠. 前牙磨耗牙色修复材料的选择[J]. 国际口腔医学杂志, 2017, 44(3): 363-367.
[11] 刘洋, 赵翰驰. 前牙重度磨损伴关节弹响患者的咬合重建[J]. 国际口腔医学杂志, 2017, 44(1): 11-18.
[12] 陈济芬,丁宏. 抛光及上釉对氧化锆全冠与釉质间磨耗性能的影响[J]. 国际口腔医学杂志, 2016, 43(2): 165-167.
[13] 林捷1 郑智烽2 卢兆杰1 李秀容2 郑志强1. 后牙氧化锆树脂粘接固定桥的设计和粘接技巧[J]. 国际口腔医学杂志, 2015, 42(6): 624-627.
[14] 王万伟 陈渊华 俞青. 二氧化锆色度和透光性与临床全瓷冠修复[J]. 国际口腔医学杂志, 2015, 42(3): 302-305.
[15] 杜桥 牛光良. 氧化锆的表面粗化和改性[J]. 国际口腔医学杂志, 2015, 42(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .