国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (2): 189-196.doi: 10.7518/gjkq.2022008

• 综述 • 上一篇    下一篇

基于唾液检测病毒感染性生物标志物的研究进展

余舒星1,2(),邹静1,2,李雨庆1()   

  1. 1.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院儿童口腔科 成都 610041
  • 收稿日期:2021-05-14 修回日期:2021-09-16 出版日期:2022-03-01 发布日期:2022-03-15
  • 通讯作者: 李雨庆
  • 作者简介:余舒星,住院医师,硕士,Email: 2532627100@qq.com
  • 基金资助:
    四川大学新型冠状病毒应急项目(2020-scunCoV-10008)

Advances in saliva-based detection of viral infectious biomarkers

Yu Shuxing1,2(),Zou Jing1,2,Li Yuqing1()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-05-14 Revised:2021-09-16 Online:2022-03-01 Published:2022-03-15
  • Contact: Yuqing Li
  • Supported by:
    Program for Novel Coronavirus Emergency Response Project of Sichuan University(2020-scunCoV-10008)

摘要:

唾液具有清洁、消化和抑菌等多种功能,其成分可因病毒等感染而发生变化。唾液成分可包含多种病毒感染的生物标志物,如DNA、RNA、抗体和抗原等。随着现代科学技术的突破性发展,各种生物标志物的检出使得利用唾液样本辅助诊断病毒感染成为可能。唾液样本具有无侵入性、方便易取的优势,逐渐成为了病毒感染检测领域的研究热点。本文将围绕该领域的研究进展进行综述。

关键词: 唾液, 病毒感染性生物标志物, 检测

Abstract:

Saliva has a variety of functions, such as cleansing, digestion, and bacterial inhibition. Its composition can be altered by infections, such as viruses. Saliva components can contain a variety of biomarkers of viral infections, such as DNA, RNA, antibodies, and antigens. With the breakthroughs in modern science and technology, the detection of va-rious biomarkers has made possible the utilization of saliva samples in aiding in the diagnosis of viral infections. With the advantages of non-invasive and easy access, saliva samples have gradually become a research hotspot in the field of viral infection detection. This article will review the research progress in this field.

Key words: saliva, biomarkers of viral infection, detection

中图分类号: 

  • R373
[1] 程兴群, 邓盟, 徐欣, 等. 唾液和唾液组学与疾病早期诊断[J]. 国际口腔医学杂志, 2014, 41(2): 213-219.
Cheng XQ, Deng M, Xu X, et al. Saliva and sa-livaomics in early diagnosis of diseases[J]. Int J Stomatol, 2014, 41(2): 213-219.
[2] Peng X, Xu X, Li YQ, et al. Transmission routes of 2019-nCoV and controls in dental practice[J]. Int J Oral Sci, 2020, 12(1): 9.
doi: 10.1038/s41368-020-0075-9
[3] Zhang CZ, Cheng XQ, Li JY, et al. Saliva in the dia-gnosis of diseases[J]. Int J Oral Sci, 2016, 8(3): 133-137.
doi: 10.1038/ijos.2016.38 pmid: 27585820
[4] 程兴群, 周学东, 徐欣. 唾液的诊断应用研究[J]. 华西口腔医学杂志, 2016, 34(6): 647-653.
Cheng XQ, Zhou XD, Xu X. Application of saliva in disease diagnosis[J]. West China J Stomatol, 2016, 34(6): 647-653.
[5] Schleiss MR. Persistent and recurring viral infections: the human herpesviruses[J]. Curr Probl Pedia-tr Adolesc Health Care, 2009, 39(1): 7-23.
[6] Lanzieri TM, Dollard SC, Bialek SR, et al. Syste-matic review of the birth prevalence of congenital cytomegalovirus infection in developing countries[J]. Int J Infect Dis, 2014, 22: 44-48.
doi: 10.1016/j.ijid.2013.12.010 pmid: 24631522
[7] Boppana SB, Ross SA, Shimamura M, et al. Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns[J]. N Engl J Med, 2011, 364(22): 2111-2118.
doi: 10.1056/NEJMoa1006561
[8] Exler S, Daiminger A, Grothe M, et al. Primary cytomegalovirus (CMV) infection in pregnancy: diagnostic value of CMV PCR in saliva compared to urine at birth[J]. J Clin Virol, 2019, 117: 33-36.
doi: 10.1016/j.jcv.2019.05.015
[9] Luck SE, Wieringa JW, Blázquez-Gamero D, et al. Congenital cytomegalovirus: a European expert consensus statement on diagnosis and management[J]. Pediatr Infect Dis J, 2017, 36(12): 1205-1213.
doi: 10.1097/INF.0000000000001763
[10] Kohmer N, Nagel A, Berger A, et al. Laboratory dia-gnosis of congenital CMV infection in newborns: impact of pre-analytic factors[J]. J Clin Virol, 2019, 115: 32-36.
doi: S1386-6532(19)30073-3 pmid: 30959324
[11] Rawlinson WD, Boppana SB, Fowler KB, et al. Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy[J]. Lancet Infect Dis, 2017, 17(6): e177-e188.
doi: 10.1016/S1473-3099(17)30143-3
[12] Viswanathan R, Bafna S, Mergu R, et al. Direct saliva real-time polymerase chain reaction assay shows low birth prevalence of congenital cytomegalovirus infection in urban western India[J]. Pediatr Infect Dis J, 2019, 38(4): e65-e68.
doi: 10.1097/INF.0000000000002094
[13] Sathiyamoorthy K, Jiang JS, Hu YX, et al. Assembly and architecture of the EBV B cell entry trigge-ring complex[J]. PLoS Pathog, 2014, 10(8): e100-4309.
[14] 左埒莲, 朱美娟, 都树娟, 等. EB病毒侵入宿主细胞机制的研究进展[J]. 病毒学报, 2014, 30(4): 476-482.
Zuo LL, Zhu MJ, Du SJ, et al. The entry of Epstein-Barr virus into B lymphocytes and epithelial cells during infection[J]. Chin J Virol, 2014, 30(4): 476-482.
[15] Hadinoto V, Shapiro M, Sun CC, et al. The dyna-mics of EBV shedding implicate a central role for epithelial cells in amplifying viral output[J]. PLoS Pathog, 2009, 5(7): e1000496.
doi: 10.1371/journal.ppat.1000496
[16] 罗碧强, 张丽卫, 窦晓青, 等. 鼻咽癌患者唾液中EB病毒特异性抗体水平检测的价值[J]. 广东医学, 2012, 33(6): 828-830.
Luo BQ, Zhang LW, Dou XQ, et al. Detection of EBV specific antibody in patients’ with nasopharyngeal carcinoma[J]. Guangdong Med J, 2012, 33(6): 828-830.
[17] 史会萍, 李榕, 段开文, 等. 云南省部分HIV感染者唾液EBV检出率分析[J]. 昆明医科大学学报, 2012, 33(6): 144-146, 160.
Shi HP, Li R, Duan KW, et al. Detection of Epstein-Barr virus in the saliva of human immunodeficiency virus infected patients from Yunnan Province, China[J]. J Kunming Med Univ, 2012, 33(6): 144-146, 160.
[18] Yan Y, Ren Y, Chen RF, et al. Evaluation of Epstein-Barr virus salivary shedding in HIV/AIDS patients and HAART use: a retrospective cohort study[J]. Virol Sin, 2018, 33(3): 227-233.
doi: 10.1007/s12250-018-0028-z pmid: 29654554
[19] 吴凡, 翟维维, 葛柳莹, 等. 245例人类免疫缺陷病毒感染者唾液中人类疱疹病毒1~4型的检测情况分析[J]. 华西口腔医学杂志, 2012, 30(5): 514-517.
Wu F, Zhai WW, Ge LY, et al. Incidence of human herpes virus 1-4 type in saliva of 245 human immunodeficiency virus-infected patients[J]. West China J Stomatol, 2012, 30(5): 514-517.
[20] Fagin U, Nerbas L, Vogl B, et al. Analysis of BZLF1 mRNA detection in saliva as a marker for active replication of Epstein-Barr virus[J]. J Virol Methods, 2017, 244: 11-16.
doi: 10.1016/j.jviromet.2017.02.016
[21] Nagel MA, Choe A, Cohrs RJ, et al. Persistence of varicella zoster virus DNA in saliva after herpes zoster[J]. J Infect Dis, 2011, 204(6): 820-824.
doi: 10.1093/infdis/jir425
[22] Park SY, Kim JY, Kim JA, et al. Diagnostic usefulness of varicella-zoster virus real-time polymerase chain reaction analysis of DNA in saliva and plasma specimens from patients with herpes zoster[J]. J Infect Dis, 2017, 217(1): 51-57.
doi: 10.1093/infdis/jix508
[23] 田晨, 赵阳, 杨晶晶, 等. 带状疱疹患者唾液中水痘-带状疱疹病毒的检测及应用价值[J]. 医学研究生学报, 2020, 33(7): 737-740.
Tian C, Zhao Y, Yang JJ, et al. Detection and application value of varicella-zoster virus in saliva of patients with herpes zoster[J]. J Med Postgrad, 2020, 33(7): 737-740.
[24] Quinlivan M, Sengupta N, Papaevangelou V, et al. Use of oral fluid to examine the molecular epidemio-logy of varicella zoster virus in the united kingdom and continental Europe[J]. J Infect Dis, 2013, 207(4): 588-593.
doi: 10.1093/infdis/jis649 pmid: 23087434
[25] Johnston C, Corey L. Current concepts for genital herpes simplex virus infection: diagnostics and pa-thogenesis of genital tract shedding[J]. Clin Microbiol Rev, 2016, 29(1): 149-161.
doi: 10.1128/CMR.00043-15
[26] Blauvelt A. Skin diseases associated with human herpesvirus 6, 7, and 8 infection[J]. J Investig Dermatol Symp Proc, 2001, 6(3): 197-202.
doi: 10.1046/j.0022-202x.2001.00040.x
[27] Campbell DM, Rappocciolo G, Jenkins FJ, et al. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis[J]. Front Microbiol, 2014, 5: 452.
doi: 10.3389/fmicb.2014.00452 pmid: 25221546
[28] van Velzen M, Ouwendijk WJ, Selke S, et al. Longitudinal study on oral shedding of herpes simplex virus 1 and varicella-zoster virus in individuals infec-ted with HIV[J]. J Med Virol, 2013, 85(9): 1669-1677.
doi: 10.1002/jmv.v85.9
[29] Bohórquez SP, Díaz J, Rincón CM, et al. Shedding of HSV-1, HSV-2, CMV, and EBV in the saliva of hematopoietic stem cell transplant recipients at Fundación HOMI - Hospital de la Misericordia, Bogotá, D.C[J]. Biomedica, 2016, 36(0): 201-210.
doi: 10.7705/biomedica.v36i0.2985 pmid: 27622810
[30] Matteoli B, Broccolo F, Scaccino A, et al. In vivo and in vitro evidence for an association between the route-specific transmission of HHV-8 and the virus genotype[J]. J Med Virol, 2012, 84(5): 786-791.
doi: 10.1002/jmv.23246 pmid: 22431027
[31] Miyazaki Y, Namba H, Torigoe S, et al. Monitoring of human herpesviruses-6 and-7 DNA in saliva samples during the acute and convalescent phases of exanthem subitum[J]. J Med Virol, 2017, 89(4): 696-702.
doi: 10.1002/jmv.24690 pmid: 27648817
[32] Descamps V, Avenel-Audran M, Valeyrie-Allanore L, et al. Saliva polymerase chain reaction assay for detection and follow-up of herpesvirus reactivation in patients with drug reaction with eosinophilia and systemic symptoms (DRESS)[J]. JAMA Dermatol, 2013, 149(5): 565-569.
doi: 10.1001/jamadermatol.2013.2018 pmid: 23426332
[33] Hunt PW. HIV and inflammation: mechanisms and consequences[J]. Curr HIV/AIDS Rep, 2012, 9(2): 139-147.
doi: 10.1007/s11904-012-0118-8
[34] Guaraldi G, Orlando G, Zona S, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population[J]. Clin Infect Dis, 2011, 53(11): 1120-1126.
doi: 10.1093/cid/cir627
[35] Dietrich EA, Gebhard KH, Fasching CE, et al. Short communication: HIV type 1 escapes inactivation by saliva via rapid escape into oral epithelial cells[J]. AIDS Res Hum Retroviruses, 2012, 28(12): 1574-1578.
doi: 10.1089/aid.2011.0069
[36] Mortimer PP, Parry JV. Detection of antibody to HIV in saliva: a brief review[J]. Clin Diagn Virol, 1994, 2(4/5): 231-243.
doi: 10.1016/0928-0197(94)90048-5
[37] Nkenfou CN, Kembou JE, Temgoua ES, et al. Eva-luation of OraQuick® HIV-1/2 as oral rapid test[J]. Afr J Infect Dis, 2013, 7(2): 27-30.
[38] Abbasi J. Accurate HIV spit test on the horizon[J]. JAMA, 2018, 319(10): 972.
[39] Yamada E, Takagi R, Tanabe Y, et al. Plasma and saliva concentrations of abacavir, tenofovir, darunavir, and raltegravir in HIV-1-infected patients[J]. Int J Clin Pharmacol Ther, 2017, 55(7): 567-570.
doi: 10.5414/CP202789
[40] Mbithi JN, Springthorpe VS, Boulet JR, et al. Survival of hepatitis A virus on human hands and its transfer on contact with animate and inanimate surfaces[J]. J Clin Microbiol, 1992, 30(4): 757-763.
doi: 10.1128/jcm.30.4.757-763.1992 pmid: 1315331
[41] Wilkins T, Akhtar M, Gititu E, et al. Diagnosis and management of hepatitis C[J]. Am Fam Physician, 2015, 91(12): 835-842.
pmid: 26131943
[42] Maddrey WC. Hepatitis B: an important public health issue[J]. J Med Virol, 2000, 61(3): 362-366.
pmid: 10861647
[43] Amado Leon LA, de Almeida AJ, de Paula VS, et al. Longitudinal study of hepatitis A infection by saliva sampling: the kinetics of HAV markers in saliva revealed the application of saliva tests for hepatitis A study[J]. PLoS One, 2015, 10(12): e0145454.
doi: 10.1371/journal.pone.0145454
[44] Cruz HM, da Silva EF, Villela-Nogueira CA, et al. Evaluation of saliva specimens as an alternative sampling method to detect hepatitis B surface antigen[J]. J Clin Lab Anal, 2011, 25(2): 134-141.
doi: 10.1002/jcla.v25.2
[45] Gonçalves Lda R, Campanhon IB, Domingues RR, et al. Comparative salivary proteome of hepatitis B-and C-infected patients[J]. PLoS One, 2014, 9(11): e113683.
doi: 10.1371/journal.pone.0113683
[46] Portilho MM, Nabuco LC, Villela-Nogueira CA, et al. Detection of occult hepatitis B in serum and oral fluid samples[J]. Mem Inst Oswaldo Cruz, 2018, 113(1): 62-65.
doi: 10.1590/0074-02760170071
[47] Ferreiro MC, Dios PD, Scully C. Transmission of hepatitis C virus by saliva[J]. Oral Dis, 2005, 11(4): 230-235.
pmid: 15984954
[48] Shafique M, Ahmad N, Awan FR, et al. Investiga-ting the concurrent presence of HCV in serum, oral fluid and urine samples from chronic HCV patients in Faisalabad, Pakistan[J]. Arch Virol, 2009, 154(9): 1523-1527.
doi: 10.1007/s00705-009-0477-7
[49] Xavier Santos RL, de Deus DM, de Almeida Lopes EP, et al. Evaluation of viral load in saliva from patients with chronic hepatitis C infection[J]. J Infect Public Health, 2015, 8(5): 474-480.
doi: 10.1016/j.jiph.2015.04.025
[50] Pfaender S, Helfritz FA, Siddharta A, et al. Environmental stability and infectivity of hepatitis C virus (HCV) in different human body fluids[J]. Front Microbiol, 2018, 9: 504.
doi: 10.3389/fmicb.2018.00504
[51] Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
doi: 10.1016/S0140-6736(20)30183-5
[52] Wu F, Zhao S, Yu B, et al. A new coronavirus asso-ciated with human respiratory disease in China[J]. Nature, 2020, 579(7798): 265-269.
doi: 10.1038/s41586-020-2008-3
[53] Woo PC, Yuen KY, Lau SK. Epidemiology of coronavirus-associated respiratory tract infections and the role of rapid diagnostic tests: a prospective study[J]. Hong Kong Med J, 2012, 18(Suppl 2): 22-24.
[54] Wang WK, Chen SY, Liu IJ, et al. Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis[J]. Emerg Infect Dis, 2004, 10(7): 1213-1219.
doi: 10.3201/eid1007.031113
[55] To KK, Tsang OT, Yip CC, et al. Consistent detection of 2019 novel coronavirus in saliva[J]. Clin Infect Dis, 2020, 71(15): 841-843.
doi: 10.1093/cid/ciaa149
[56] To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study[J]. Lancet Infect Dis, 2020, 20(5): 565-574.
doi: 10.1016/S1473-3099(20)30196-1
[57] Xu RS, Cui BM, Duan XB, et al. Saliva: potential diagnostic value and transmission of 2019-nCoV[J]. Int J Oral Sci, 2020, 12(1): 11.
doi: 10.1038/s41368-020-0080-z
[58] Hamid H, Khurshid Z, Adanir N, et al. COVID-19 pandemic and role of human saliva as a testing biofluid in point-of-care technology[J]. Eur J Dent, 2020, 14(S 01): S123-S129.
doi: 10.1055/s-0040-1713020
[59] Wiwanitkit V. Unusual mode of transmission of dengue[J]. J Infect Dev Ctries, 2009, 4(1): 51-54.
doi: 10.3855/jidc.145
[60] Chen LH, Wilson ME. Transmission of dengue virus without a mosquito vector: nosocomial mucocutaneous transmission and other routes of transmission[J]. Clin Infect Dis, 2004, 39(6): e56-e60.
doi: 10.1086/423807 pmid: 15472803
[61] Basurko C, Carles G, Youssef M, et al. Maternal and fetal consequences of dengue fever during pregnancy[J]. Eur J Obstet Gynecol Reprod Biol, 2009, 147(1): 29-32.
doi: 10.1016/j.ejogrb.2009.06.028 pmid: 19632027
[62] Korhonen EM, Huhtamo E, Virtala AM, et al. Approach to non-invasive sampling in dengue diagnostics: exploring virus and NS1 antigen detection in saliva and urine of travelers with dengue[J]. J Clin Virol, 2014, 61(3): 353-358.
doi: 10.1016/j.jcv.2014.08.021 pmid: 25242312
[63] Poloni TR, Oliveira AS, Alfonso HL, et al. Detection of dengue virus in saliva and urine by real time RT-PCR[J]. Virol J, 2010, 7: 22.
doi: 10.1186/1743-422X-7-22 pmid: 20105295
[64] Zhang Y, Bai JH, Ying JY. A stacking flow immunoassay for the detection of dengue-specific immunoglobulins in salivary fluid[J]. Lab Chip, 2015, 15(6): 1465-1471.
doi: 10.1039/c4lc01127a pmid: 25608951
[65] Tan M, Cui LB, Huo X, et al. Saliva as a source of reagent to study human susceptibility to avian influenza H7N9 virus infection[J]. Emerg Microbes Infect, 2018, 7(1): 156.
[66] Glezen WP. Clinical practice. Prevention and treatment of seasonal influenza[J]. N Engl J Med, 2008, 359(24): 2579-2585.
doi: 10.1056/NEJMcp0807498
[67] Hall CB, Weinberg GA, Iwane MK, et al. The burden of respiratory syncytial virus infection in young children[J]. N Engl J Med, 2009, 360(6): 588-598.
doi: 10.1056/NEJMoa0804877
[68] To KK, Lu L, Yip CC, et al. Additional molecular testing of saliva specimens improves the detection of respiratory viruses[J]. Emerg Microbes Infect, 2017, 6(6): e49.
[69] Sueki A, Matsuda K, Yamaguchi A, et al. Evaluation of saliva as diagnostic materials for influenza virus infection by PCR-based assays[J]. Clin Chim Acta, 2016, 453: 71-74.
doi: 10.1016/j.cca.2015.12.006
[70] Kim YG, Yun SG, Kim MY, et al. Comparison between saliva and nasopharyngeal swab specimens for detection of respiratory viruses by multiplex reverse transcription-PCR[J]. J Clin Microbiol, 2017, 55(1): 226-233.
doi: 10.1128/JCM.01704-16
[71] Yoon J, Yun SG, Nam J, et al. The use of saliva spe-cimens for detection of influenza A and B viruses by rapid influenza diagnostic tests[J]. J Virol Methods, 2017, 243: 15-19.
doi: 10.1016/j.jviromet.2017.01.013
[72] zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application[J]. Nat Rev Cancer, 2002, 2(5): 342-350.
doi: 10.1038/nrc798
[73] Chai RC, Lambie D, Verma M, et al. Current trends in the etiology and diagnosis of HPV-related head and neck cancers[J]. Cancer Med, 2015, 4(4): 596-607.
doi: 10.1002/cam4.2015.4.issue-4
[74] Ragin CC, Taioli E, Weissfeld JL, et al. 11q13 amplification status and human papillomavirus in relation to p16 expression defines two distinct etiologies of head and neck tumours[J]. Br J Cancer, 2006, 95(10): 1432-1438.
doi: 10.1038/sj.bjc.6603394
[75] Duncan LD, Winkler M, Carlson ER, et al. p16 immunohistochemistry can be used to detect human papillomavirus in oral cavity squamous cell carcinoma[J]. J Oral Maxillofac Surg, 2013, 71(8): 1367-1375.
doi: 10.1016/j.joms.2013.02.019
[76] Westra WH. Detection of human papillomavirus (HPV) in clinical samples: evolving methods and strategies for the accurate determination of HPV status of head and neck carcinomas[J]. Oral Oncol, 2014, 50(9): 771-779.
doi: 10.1016/j.oraloncology.2014.05.004
[77] Zaravinos A. An updated overview of HPV-associa-ted head and neck carcinomas[J]. Oncotarget, 2014, 5(12): 3956-3969.
doi: 10.18632/oncotarget.v5i12
[78] Cohen N, Gupta M, Doerwald-Munoz L, et al. Developing a new diagnostic algorithm for human pa-pilloma virus associated oropharyngeal carcinoma: an investigation of HPV DNA assays[J]. J Otolaryngol Head Neck Surg, 2017, 46(1): 11.
doi: 10.1186/s40463-017-0189-z
[79] Wasserman JK, Rourke R, Purgina B, et al. Correction to: HPV DNA in saliva from patients with SCC of the head and neck is specific for p16-positive oropharyngeal tumours[J]. J Otolaryngol Head Neck Surg, 2018, 47(1): 49.
doi: 10.1186/s40463-018-0294-7 pmid: 30071890
[80] Qureishi A, Ali M, Fraser L, et al. Saliva testing for human papilloma virus in oropharyngeal squamous cell carcinoma: a diagnostic accuracy study[J]. Clin Otolaryngol, 2018, 43(1): 151-157.
doi: 10.1111/coa.12917 pmid: 28620984
[81] Khurshid Z, Zafar M, Khan E, et al. Human saliva can be a diagnostic tool for Zika virus detection[J]. J Infect Public Health, 2019, 12(5): 601-604.
doi: 10.1016/j.jiph.2019.05.004
[82] Yan J, Chen LL, Lou YL, et al. Investigation of H-GV and TTV infection in sera and saliva from non-hepatitis patients with oral diseases[J]. World J Gastroenterol, 2002, 8(5): 857-862.
doi: 10.3748/wjg.v8.i5.857
[83] Musso D, Teissier A, Rouault E, et al. Erratum to: detection of chikungunya virus in saliva and urine[J]. Virol J, 2016, 13(1): 120.
doi: 10.1186/s12985-016-0570-y
[84] Niedrig M, Patel P, El Wahed AA, et al. Find the right sample: a study on the versatility of saliva and urine samples for the diagnosis of emerging viruses[J]. BMC Infect Dis, 2018, 18(1): 707.
doi: 10.1186/s12879-018-3611-x
[85] Rivero-Juarez A, Frias M, Lopez-Lopez P, et al. Detection of hepatitis E virus RNA in saliva for diagnosis of acute infection[J]. Zoonoses Public Health, 2018, 65(5): 584-588.
doi: 10.1111/zph.2018.65.issue-5
[86] 耿全林, 梁久红, 李丹平, 等. 唾液抗戊型肝炎病毒IgM用于戊型肝炎诊断的探讨[J]. 中华传染病杂志, 2005, 23(5): 342-344.
Geng QL, Liang JH, Li DP, et al. Detection of anti-HEV IgM in saliva for early diagnosis of hepatitis E[J]. Chin J Infect Dis, 2005, 23(5): 342-344.
[1] 杨静,柳登高. 内镜下激光碎石术治疗唾液腺结石病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 704-710.
[2] 赵玲帆, 周杨, 叶鑫鑫, 张强. 肾移植术后腮腺低分化黏液表皮样癌1例[J]. 国际口腔医学杂志, 2023, 50(4): 419-422.
[3] 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328.
[4] 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560.
[5] 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219.
[6] 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613.
[7] 马平川,李春洁,李龙江. 唾液腺导管癌的诊疗研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 459-467.
[8] 杨虹,晋瑜,赖文莉. 安慰剂调节正畸牙移动疼痛的随机交叉对照试验[J]. 国际口腔医学杂志, 2020, 47(4): 424-430.
[9] 黄璐,戴杰,吴燕岷. 唾液生物标志物在口腔癌筛查中的应用[J]. 国际口腔医学杂志, 2020, 47(1): 68-75.
[10] 陈东,杨征,蒋丽. 放射性口腔干燥症的评估与临床管理的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 711-717.
[11] 孟璐璐,杜晓红,武云霞. 灼口综合征唾液因素的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 463-468.
[12] 胡竹林,赵诣,李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
[13] 杨卓,张盛丹,刘程程,丁一. 侵袭性牙周炎唾液诊断标记物的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 55-61.
[14] 李倩,张平,陈娇,曾昕,冯云. 唾液组学在口腔癌诊断中的应用[J]. 国际口腔医学杂志, 2018, 45(6): 710-715.
[15] 李维,农晓琳. 糖尿病对唾液分泌和唾液腺的影响及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 579-583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .