国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (6): 725-730.doi: 10.7518/gjkq.2021096

• 综述 • 上一篇    下一篇

低能量激光治疗对种植体周围组织愈合的研究进展

王悦(),文冰(),邓梦婷,李建平   

  1. 南昌大学第一附属医院口腔科 南昌 330006
  • 收稿日期:2021-01-15 修回日期:2021-06-22 出版日期:2021-11-01 发布日期:2021-10-28
  • 通讯作者: 文冰
  • 作者简介:王悦,硕士,Email: 511354558@qq.com
  • 基金资助:
    国家自然科学基金(82060208)

Research advances of low-level laser therapy on peri-implant tissue healing

Wang Yue(),Wen Bing(),Deng Mengting,Li Jianping   

  1. Dept. of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
  • Received:2021-01-15 Revised:2021-06-22 Online:2021-11-01 Published:2021-10-28
  • Contact: Bing Wen
  • Supported by:
    National Natural Science Foundation of China(82060208)

摘要:

低能量激光治疗是一种通过低能量激光的生物刺激作用来促进细胞愈合的治疗方法。在口腔种植领域,低能量激光可以起到促进种植体骨结合、促进软组织愈合、抑制炎症、减轻术后不良反应的作用。本文就低能量激光疗法对种植体周围组织的作用机制和临床应用进展进行综述,为其在临床广泛应用奠定基础。

关键词: 低能量激光治疗, 种植牙, 骨结合, 软组织愈合, 生物调节

Abstract:

Low-level laser therapy (LLLT) is a kind of therapy that can use biological stimulation of the low-level laser to promote cell healing. In the field of oral implants, low-level lasers promote osseointegration of implants, enhance soft tissue healing, inhibit inflammation and reduce post-operative adverse reactions. This review mainly introduced the mechanism and clinical application of LLLT on peri-implant tissue, aiming to lay a foundation for further clinical application.

Key words: low energy laser treatment, dental implant, osseointegration, soft tissue healing, biomodulation

中图分类号: 

  • R782.1
[1] Luke AM, Mathew S, Altawash MM, et al. Lasers: a review with their applications in oral medicine[J]. J Lasers Med Sci, 2019, 10(4):324-329.
doi: 10.15171/jlms.2019.52
[2] Mester A, Mester A. The history of photobiomodulation: endre mester (1903-1984)[J]. Photomed Laser Surg, 2017, 35(8):393-394.
doi: 10.1089/pho.2017.4332
[3] Kalhori KAM, Vahdatinia F, Jamalpour MR, et al. Photobiomodulation in oral medicine[J]. Photobiomodul Photomed Laser Surg, 2019, 37(12):837-861.
doi: 10.1089/photob.2019.4706
[4] Schindl A, Schindl M, Pernerstorfer-Schön H, et al. Low-intensity laser therapy: a review[J]. J Investig Med, 2000, 48(5):312-326.
[5] Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation[J]. J Photochem Photobiol B, 2014, 140:344-358.
doi: 10.1016/j.jphotobiol.2014.07.021
[6] Lima PLV, Pereira CV, Nissanka N, et al. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase[J]. J Photochem Photobiol B, 2019, 194:71-75.
doi: 10.1016/j.jphotobiol.2019.03.015
[7] Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation[J]. Photochem Photobiol, 2018, 94(2):199-212.
doi: 10.1111/php.2018.94.issue-2
[8] Tam SY, Tam VCW, Ramkumar S, et al. Review on the cellular mechanisms of low-level laser therapy use in oncology[J]. Front Oncol, 2020, 10:1255.
doi: 10.3389/fonc.2020.01255
[9] Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing[J]. Nat Cell Biol, 2019, 21(1):18-24.
doi: 10.1038/s41556-018-0237-6 pmid: 30602767
[10] Ladiz MAR, Mirzaei A, Hendi SS, et al. Effect of photobiomodulation with 810 and 940 nm diode lasers on human gingival fibroblasts[J]. Dent Med Probl, 2020, 57(4):369-376.
doi: 10.17219/dmp/122688
[11] Ren C, McGrath C, Jin LJ , et al. Effect of diode low-level lasers on fibroblasts derived from human perio-dontal tissue: a systematic review of in vitro studies[J]. Lasers Med Sci, 2016, 31(7):1493-1510.
doi: 10.1007/s10103-016-2026-4
[12] Papadelli A, Kyriakidou K, Kotsakis GA, et al. Immunomodulatory effects of Nd: YAG (1 064 nm) and diode laser (810 nm) wavelengths to LPS-challen-ged human gingival fibroblasts[J]. Arch Oral Biol, 2021, 122:104982.
[13] Cardoso LM, Pansani TN, Hebling J, et al. Photobiomodulation of inflammatory-cytokine-related effects in a 3-D culture model with gingival fibroblasts[J]. Lasers Med Sci, 2020, 35(5):1205-1212.
doi: 10.1007/s10103-020-02974-8
[14] Chang B, Qiu H, Zhao H, et al. The effects of photobiomodulation on MC3T3-E1 cells via 630 nm and 810 nm light-emitting diode[J]. Med Sci Monit, 2019, 25:8744-8752.
doi: 10.12659/MSM.920396
[15] Ribeiro LNS, Monteiro PM, Barretto GD, et al. The effect of cigarette smoking and low-level laser irradiation in RANK/RANKL/OPG expression[J]. Braz Dent J, 2020, 31(1):57-62.
doi: 10.1590/0103-6440202002519
[16] Wang LY, Wu F, Liu C, et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition[J]. Lasers Med Sci, 2019, 34(1):169-178.
doi: 10.1007/s10103-018-2673-8
[17] Winter R, Dungel P, Reischies FMJ, et al. Photobiomodulation (PBM) promotes angiogenesis in-vitro and in chick embryo chorioallantoic membrane mo-del[J]. Sci Rep, 2018, 8(1):17080.
doi: 10.1038/s41598-017-18519-z
[18] Amaroli A, Ravera S, Baldini F, et al. Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation[J]. Lasers Med Sci, 2019, 34(3):495-504.
doi: 10.1007/s10103-018-2623-5
[19] Terena SML, Mesquita-Ferrari RA, de Siqueira A-raújo AM, et al. Photobiomodulation alters the viability of HUVECs cells[J]. Lasers Med Sci, 2021, 36(1):83-90.
doi: 10.1007/s10103-020-03016-z
[20] de Brito Sousa K, Rodrigues MFSD, de Souza Santos D, et al. Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers[J]. Lasers Med Sci, 2020, 35(2):337-343.
doi: 10.1007/s10103-019-02817-1
[21] Palled V, Rao J, Singh RD, et al. Assessment of the healing of dental implant surgical site following low-level laser therapy using bioclinical parameters: an exploratory study[J]. J Oral Implantol, 2021, 47(3):230-235.
doi: 10.1563/aaid-joi-D-18-00316
[22] Ercan E, Ustaoğlu G, Tunali M. Low-level laser the-rapy in enhancing wound healing and preserving tissue thickness at free gingival graft donor sites: a randomized, controlled clinical study[J]. Photomed Laser Surg, 2017, 35(4):223-230.
doi: 10.1089/pho.2016.4163
[23] Mayer L, Gomes FV, de Oliveira MG, et al. Peri-implant osseointegration after low-level laser therapy: micro-computed tomography and resonance frequency analysis in an animal model[[J]. Lasers Med Sci, 2016, 31(9):1789-1795.
doi: 10.1007/s10103-016-2051-3
[24] Prados-Frutos JC, Rodríguez-Molinero J, Prados-Privado M, et al. Lack of clinical evidence on low-level laser therapy (LLLT) on dental titanium implant: a systematic review[J]. Lasers Med Sci, 2016, 31(2):383-392.
doi: 10.1007/s10103-015-1860-0
[25] Abdulghani AS, Elhag SB. Shortened dental arch as a solution for maxillary sinus proximity in dental implant restoration[J]. Clin Case Rep, 2017, 5(6):782-786.
doi: 10.1002/ccr3.923
[26] Huang H, Wu W, Hunziker E. The clinical significance of implant stability quotient (ISQ) measurements: a li-terature review[J]. J Oral Biol Craniofac Res, 2020, 10(4):629-638.
doi: 10.1016/j.jobcr.2020.07.004 pmid: 32983857
[27] Mohajerani H, Salehi AM, Tabeie F, et al. Can low-level laser and light-emitting diode enhance the stability of dental implants[J]. J Maxillofac Oral Surg, 2020, 19(2):302-306.
doi: 10.1007/s12663-019-01210-3
[28] Karaca IR, Ergun G, Ozturk DN. Is Low-level laser therapy and gaseous ozone application effective on osseointegration of immediately loaded implants[J]. Niger J Clin Pract, 2018, 21(6):703-710.
doi: 10.4103/njcp.njcp_82_17 pmid: 29888715
[29] Zayed SM, Hakim AAA. Clinical efficacy of photobiomodulation on dental implant osseointegration: a systematic review[J]. Saudi J Med Med Sci, 2020, 8(2):80-86.
[30] Matys J, Świder K, Grzech-Leśniak K, et al. Photobiomodulation by a 635 nm diode laser on peri-implant bone: primary and secondary stability and bone density analysis-a randomized clinical trial[J]. Biomed Res Int, 2019, 2019:2785302.
[31] Lobato RPB, Kinalski MA, Martins TM, et al. In-fluence of low-level laser therapy on implant stability in implants placed in fresh extraction sockets: a randomized clinical trial[J]. Clin Implant Dent Relat Res, 2020, 22(3):261-269.
doi: 10.1111/cid.2020.v22.3
[32] Santinoni CS, Neves APC, Almeida BFM, et al. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization[J]. J Biomed Mater Res A, 2021, 109(6):849-858.
doi: 10.1002/jbm.v109.6
[33] Gulati P, Kumar M, Issar G, et al. Effect of low le-vel laser therapy on crestal bone levels around dental implants-a pilot study[J]. Clin Implant Dent Relat Res, 2020, 22(6):739-746.
doi: 10.1111/cid.2020.v22.6
[34] Monea A, Beresescu G, Boeriu S, et al. Bone hea-ling after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: a pilot histolo-gical evaluation[J]. BMC Oral Health, 2015, 15:134.
doi: 10.1186/s12903-015-0122-7
[35] de Oliveira GJPL, Aroni MAT, Pinotti FE, et al. Low-level laser therapy (LLLT) in sites grafted with osteoconductive bone substitutes improves osseointegration[J]. Lasers Med Sci, 2020, 35(7):1519-1529.
doi: 10.1007/s10103-019-02943-w
[36] 任刚, 刘毅, 李荣华, 等. 低能量激光治疗对临床患者种植体周围炎的疗效研究[J]. 国际生物医学工程杂志, 2018, 41(5):439-442.
Ren G, Liu Y, Li RH, et al. Effect of low energy laser therapy on peri-implantitis in clinical patients[J]. Int J Biomedl Eng, 2018, 41(5):439-442.
[37] 赵燕娟, 李荣华, 任刚, 等. 低能量激光联合牙周基础治疗对种植体周围炎龈沟液中IL-8、b-FGF及IL-1β水平的影响[J]. 国际生物医学工程杂志, 2019, 42(2):130-133.
Zhao YJ, Li RH, Ren G, et al. Effect of low level laser treatment combined with periodontal initial therapy on IL-8, b-FGF and IL-1β content in gingival crevicular fluid on peri-implantitis[J]. Int J Biomed Eng, 2019, 42(2):130-133.
[38] Ozturan S, Sirali A, Sur H. Effects of Nd: YAG laser irradiation for minimizing edema and pain after sinus lift surgery: randomized controlled clinical trial[J]. Photomed Laser Surg, 2015, 33(4):193-199.
doi: 10.1089/pho.2014.3823 pmid: 25764523
[39] Maldaner DR, Azzolin VF, Barbisan F, et al. In vitro effect of low-level laser therapy on the proliferative, apoptosis modulation, and oxi-inflammatory mar-kers of premature-senescent hydrogen peroxide-induced dermal fibroblasts[J]. Lasers Med Sci, 2019, 34(7):1333-1343.
doi: 10.1007/s10103-019-02728-1
[1] 陈小利,张帆,刘程程. 光生物调节在放射治疗后口腔并发症防治中的应用进展[J]. 国际口腔医学杂志, 2022, 49(6): 707-716.
[2] 王佳,李文霞,殷丽华. 缺牙区伴埋伏牙的种植修复策略[J]. 国际口腔医学杂志, 2021, 48(1): 77-81.
[3] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
[4] 向琳,陈晖璐,袁影,张勤,辛娜,宫苹. 降钙素基因相关肽对种植体周围神经、血管再生及骨结合的作用[J]. 国际口腔医学杂志, 2018, 45(5): 509-515.
[5] 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533.
[6] 王晓娜 赵静辉 储顺礼 周延民. 骨替代材料在口腔种植领域中的成骨效果[J]. 国际口腔医学杂志, 2016, 43(1): 113-.
[7] 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430.
[8] 卿萍 高姗姗 朱卓立 樊弘毅 于海洋. 伴靠近下颌神经管埋伏牙的种植修复1 例[J]. 国际口腔医学杂志, 2012, 39(6): 736-738.
[9] 王鲲鹏综述 张剑明审校. 即刻种植的研究进展[J]. 国际口腔医学杂志, 2012, 39(1): 136-139.
[10] 李卓睿1综述 柳忠豪2审校. 即刻种植种植体周围骨缺损间隙的处理[J]. 国际口腔医学杂志, 2012, 39(1): 120-123.
[11] 王亚敏综述 宋光保审校. 放射治疗对口腔种植的影响[J]. 国际口腔医学杂志, 2011, 38(2): 204-206.
[12] 李四群,陈守平,王贻宁,周正炎. 骨质疏松症及其对种植体骨结合影响的研究进展[J]. 国际口腔医学杂志, 2001, 28(04): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .