国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (1): 30-36.doi: 10.7518/gjkq.2019.01.006

• 综述 • 上一篇    下一篇

受体活性修饰蛋白1促进成骨作用的研究进展

张勤,宫苹()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2018-05-24 修回日期:2018-07-19 出版日期:2019-01-01 发布日期:2019-01-11
  • 通讯作者: 宫苹
  • 作者简介:张勤,硕士,Email:zhangq0312@hotmail.com
  • 基金资助:
    国家自然科学基金(81571008);国家自然科学基金(81701007);四川省科技计划(2018RZ0087);中央高校基本科研业务费专项资金(2017SCU-12056);中央高校基本科研业务费专项资金(2018SCUH0006);中国博士后科学基金资助项目(2018M-631091);四川大学华西口腔医院青年科学研究基金项目(2016-11)

Advancements in receptor activity-modifying protein-1 for osteogenesis

Qin Zhang,Ping Gong()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantation, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-05-24 Revised:2018-07-19 Online:2019-01-01 Published:2019-01-11
  • Contact: Ping Gong
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81571008);This study was supported by National Natural Science Foundation of China(81701007);Sichuan Science and Technology Program(2018RZ0087);the Fundamental Research Funds for the Central Universities(2017SCU-12056);the Fundamental Research Funds for the Central Universities(2018SCUH0006);Project Funded by China Postdoctoral Science Foundation(2018M-631091);the Youth Science Foundation of West China Hospital of Stomatology of Sichuan University(2016-11)

摘要:

生理状态下,骨吸收与骨形成过程的动态平衡对维持骨组织功能至关重要。而在骨损伤状态下,如何通过促进骨形成,抑制骨吸收从而促进骨愈合过程一直是该领域研究的热点。近年来,受体活性修饰蛋白-1(RAMP1)在骨代谢过程中的调节作用已受到越来越多的关注。RAMP1广泛存在于骨组织中,它可以与不同的G蛋白偶联受体(GPCR)结合,修饰受体行为,调节相应的配体作用。此外,它还能进一步参与到受体介导的信号转导中,影响成骨相关细胞内蛋白的相互作用,从而影响成骨相关细胞增殖、迁移、分化等生物学特性。本文就近年来RAMP1促进成骨作用的研究作一综述。

关键词: 受体活性修饰蛋白1, 降钙素基因相关肽, 成骨作用, G蛋白偶联受体, 降钙素受体样受体

Abstract:

Under physiological conditions, the dynamic balance between bone resorption and bone formation is necessary to maintain bone tissue function. However, whether we can further accelerate or improve osteogenesis process during bone wound healing has been widely explored. Receptor activity-modifying protein-1 (RAMP1) has been extensively investigated because of its extensive biological activities, especially its effects on bone fracture repair. RAMP1 is commonly found in bone tissues and can interact with G-protein coupled receptors to modify their activities. RAMP1 also has a broader role in regulating receptor trafficking and signaling, affecting the biological characteristics of osteoblasts, such as proliferation, migration, and differentiation. Thus, this review summarizes recent studies about the effects of RAMP1 on osteogenesis.

Key words: receptor activity-modifying protein-1, calcitonin gene-related peptide, osteogenesis, G-protein coupled receptor, calcitonin receptor-like receptor

中图分类号: 

  • Q51

表1

常见的RAMPs家族参与构成的受体"

受体名称 受体主要分子组成
CGRP受体 CLR+RAMP1
AM1受体 CLR+RAMP2/3
AM2受体 CLR+RAMP1/2/3
AMY受体 CTR+RAMP1/2/3
VPAC受体 VPAC受体+RAMP1/2/3
PTH1受体 PTH1受体+RAMP2
PTH2受体 PTH2受体+RAMP3
CaSR CaSR+RAMP1/2/3

图1

RAMP1参与CGRP促进成骨作用的机制 N:氮末端;C:碳末端;RCP:受体组分蛋白(receptor com-ponent protein);AC:腺苷酸环化酶(adenylate cyclase);ADP:二磷酸腺苷(adenosine diphosphate); PKA:蛋白激酶A(protein kinase A);CREB1:环磷酸腺苷应答元件结合蛋白1(cyclic adenosine monophosphate response element binding protein 1);SP7/Osterix:锌指结构转录因子。"

[1] Wang LP, Shi XY, Zhao R , et al. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone re-sorption[J]. Bone, 2010,46(5):1369-1379.
doi: 10.1016/j.bone.2009.11.029 pmid: 2854244
[2] Cooper RR . Nerves in cortical bone[J]. Science, 1968,160(3825):327-328.
doi: 10.1126/science.160.3825.327
[3] Bjurholm A, Kreicbergs A, Brodin E , et al. Subs-tance P- and CGRP-immunoreactive nerves in bone[J]. Peptides, 1988,9(1):165-171.
doi: 10.1016/0196-9781(88)90023-x pmid: 2452430
[4] Bahney CS, Hu DP, Taylor AJ , et al. Stem cell-derived endochondral cartilage stimulates bone hea-ling by tissue transformation[J]. J Bone Miner Res, 2014,29(5):1269-1282.
doi: 10.1002/jbmr.2148 pmid: 24259230
[5] Zhang ZM, Dickerson IM, Russo AF . Calcitonin gene-related peptide receptor activation by receptor activity-modifying protein-1 gene transfer to vascular smooth muscle cells[J]. Endocrinology, 2006,147(4):1932-1940.
doi: 10.1210/en.2005-0918 pmid: 16373421
[6] Zhang ZM, Winborn CS, Marquez de Prado B , et al. Sensitization of calcitonin gene-related peptide re-ceptors by receptor activity-modifying protein-1 in the trigeminal ganglion[J]. J Neurosci, 2007,27(10):2693-2703.
doi: 10.1523/JNEUROSCI.4542-06.2007 pmid: 17344407
[7] Zhang YF, Xu JK, Ruan YC , et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med, 2016,22(10):1160-1169.
doi: 10.1038/nm.4162 pmid: 27571347
[8] Hay DL, Walker CS . CGRP and its receptors[J]. Headache, 2017,57(4):625-636.
doi: 10.1111/head.2017.57.issue-4
[9] Blixt FW, Radziwon-Balicka A, Edvinsson L , et al. Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina[J]. Exp Eye Res, 2017,161:124-131.
doi: 10.1016/j.exer.2017.06.002 pmid: 28603014
[10] Zheng LF, Wang R, Xu YZ , et al. Calcitonin gene-related peptide dynamics in rat dorsal root ganglia and spinal cord following different sciatic nerve in-juries[J]. Brain Res, 2008,1187:20-32.
doi: 10.1016/j.brainres.2007.10.044 pmid: 18035338
[11] Toth CC, Willis D, Twiss JL , et al. Locally synthe-sized calcitonin gene-related peptide has a critical role in peripheral nerve regeneration[J]. J Neuro-pathol Exp Neurol, 2009,68(3):326-337.
doi: 10.1097/NEN.0b013e31819ac71b pmid: 19225405
[12] Xiang L, Ma L, Wei N , et al. Effect of lentiviral vector overexpression α-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-de-ficient mice[J]. Bone, 2017,94:135-140.
doi: 10.1016/j.bone.2015.08.009
[13] Hilairet S, Foord SM, Marshall FH , et al. Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins[J]. J Biol Chem, 2001,276(31):29575-29581.
doi: 10.1074/jbc.M102722200 pmid: 11387328
[14] Hay DL, Poyner DR, Smith DM . Desensitisation of adrenomedullin and CGRP receptors[J]. Regul Pept, 2003,112(1/2/3):139-145.
doi: 10.1016/S0167-0115(03)00032-6 pmid: 12667635
[15] Udawela M, Hay DL, Sexton PM . The receptor activity modifying protein family of G protein coupled re-ceptor accessory proteins[J]. Semin Cell Dev Biol, 2004,15(3):299-308.
doi: 10.1016/j.semcdb.2003.12.019 pmid: 15125893
[16] Qi T, Hay DL . Structure-function relationships of the N-terminus of receptor activity-modifying proteins[J]. Br J Pharmacol, 2010,159(5):1059-1068.
doi: 10.1111/j.1476-5381.2009.00541.x pmid: 20015292
[17] Booe JM, Walker CS, Barwell J , et al. Structural basis for receptor activity-modifying protein-depen-dent selective peptide recognition by a G protein-coupled receptor[J]. Mol Cell, 2015,58(6):1040-1052.
doi: 10.1016/j.molcel.2015.04.018 pmid: 4504005
[18] Hay DL, Walker CS, Gingell JJ , et al. Receptor activity-modifying proteins; multifunctional G pro-tein-coupled receptor accessory proteins[J]. Biochem Soc Trans, 2016,44(2):568-573.
doi: 10.1042/BST20150237 pmid: 27068971
[19] Klein KR, Matson BC, Caron KM . The expanding repertoire of receptor activity modifying protein (RAMP) function[J]. Crit Rev Biochem Mol Biol, 2016,51(1):65-71.
doi: 10.3109/10409238.2015.1128875
[20] Yuan J, Gilbert ER, Cline MA . The central anore-xigenic mechanism of amylin in Japanese quail (Coturnix japonica) involves pro-opiomelanocortin, calcitonin receptor, and the arcuate nucleus of the hypothalamus[J]. Comp Biochem Physiol A Mol Integr Physiol, 2017,210:28-34.
doi: 10.1016/j.cbpa.2017.05.011 pmid: 28552562
[21] Edvinsson L . The trigeminovascular pathway: role of CGRP and CGRP receptors in migraine[J]. Hea-dache, 2017,57(Suppl 2):47-55.
doi: 10.1111/head.13081 pmid: 28485848
[22] Hay DL, Garelja ML, Poyner DR , et al. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25[J]. Br J Pharmacol, 2018,175(1):3-17.
doi: 10.1111/bph.14075 pmid: 29059473
[23] Booe JM, Warner ML, Roehrkasse AM , et al. Probing the mechanism of receptor activity-modifying protein modulation of GPCR ligand selectivity through rational design of potent adrenomedullin and calcitonin gene-related peptide antagonists[J]. Mol Pharmacol, 2018,93(4):355-367.
doi: 10.1124/mol.117.110916 pmid: 29363552
[24] Hay DL, Pioszak AA . Receptor activity-modifying proteins (RAMPs): new insights and roles[J]. Annu Rev Pharmacol Toxicol, 2016,56:469-487.
doi: 10.1146/annurev-pharmtox-010715-103120 pmid: 26514202
[25] Pawlak JB, Wetzel-Strong SE, Dunn MK , et al. Car-diovascular effects of exogenous adrenomedullin and CGRP in Ramp and Calcrl deficient mice[J]. Pepti-des, 2017,88:1-7.
doi: 10.1016/j.peptides.2016.12.002 pmid: 27940069
[26] Mayr B, Montminy M . Transcriptional regulation by the phosphorylation-dependent factor CREB[J]. Nat Rev Mol Cell Biol, 2001,2(8):599-609.
doi: 10.1038/35085068 pmid: 11483993
[27] Koga T, Matsui Y, Asagiri M , et al. NFAT and Osterix cooperatively regulate bone formation[J]. Nat Med, 2005,11(8):880-885.
doi: 10.1038/nm1270
[28] Komori T . Signaling networks in RUNX2-dependent bone development[J]. J Cell Biochem, 2011,112(3):750-755.
doi: 10.1002/jcb.22994
[29] Yoo YM, Kwag JH, Kim KH , et al. Effects of neuro-peptides and mechanical loading on bone cell resorp-tion in vitro[J]. Int J Mol Sci, 2014,15(4):5874-5883.
doi: 10.3390/ijms15045874 pmid: 4013601
[30] Liang W, Zhuo XL, Tang ZF , et al. Calcitonin gene-related peptide stimulates proliferation and osteo-genic differentiation of osteoporotic rat-derived bone mesenchymal stem cells[J]. Mol Cell Biochem, 2015,402(1/2):101-110.
doi: 10.1007/s11010-014-2318-6 pmid: 25563479
[31] Mach DB, Rogers SD, Sabino MC , et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur[J]. Neuroscience, 2002,113(1):155-166.
doi: 10.1016/S0306-4522(02)00165-3 pmid: 12123694
[32] Ballica R, Valentijn K, Khachatryan A , et al. Targeted expression of calcitonin gene-related peptide to os-teoblasts increases bone density in mice[J]. J Bone Miner Res, 1999,14(7):1067-1074.
doi: 10.1359/jbmr.1999.14.7.1067 pmid: 10404006
[33] Gangula PR, Zhao H, Supowit SC , et al. Increased blood pressure in alpha-calcitonin gene-related peptide/calcitonin gene knockout mice[J]. Hyper-tension, 2000,35(1 Pt 2):470-475.
doi: 10.1161/01.HYP.35.1.470 pmid: 10642343
[34] Huebner AK, Schinke T, Priemel M , et al. Calcitonin deficiency in mice progressively results in high bone turnover[J]. J Bone Miner Res, 2006,21(12):1924-1934.
doi: 10.1359/jbmr.060820 pmid: 17002587
[35] Li Y, Tan YH, Zhang G , et al. Effects of calcitonin gene-related peptide on the expression and activity of nitric oxide synthase during mandibular bone healing in rabbits: an experimental study[J]. J Oral Maxillofac Surg, 2009,67(2):273-279.
doi: 10.1016/j.joms.2008.06.077 pmid: 19138599
[36] Hilairet S, Bélanger C, Bertrand J , et al. Agonist-pro-moted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin[J]. J Biol Chem, 2001,276(45):42182-42190.
doi: 10.1074/jbc.m107323200 pmid: 11535606
[37] McLatchie LM, Fraser NJ, Main MJ , et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor[J]. Nature, 1998,393(6683):333-339.
[38] Márquez-Rodas I, Xavier FE, Arroyo-Villa I , et al. Increased expression in calcitonin-like receptor in-duced by aldosterone in cerebral arteries from spon-taneously hypertensive rats does not correlate with functional role of CGRP receptor[J]. Regul Pept, 2008,146(1/2/3):125-130.
doi: 10.1016/j.regpep.2007.09.001 pmid: 17904662
[39] Togari A, Arai M, Mizutani S , et al. Expression of mRNAs for neuropeptide receptors and beta-adre-nergic receptors in human osteoblasts and human osteogenic sarcoma cells[J]. Neurosci Lett, 1997,233(2/3):125-128.
doi: 10.1016/S0304-3940(97)00649-6
[40] Kawase T, Okuda K, Burns DM . Immature human osteoblastic MG63 cells predominantly express a subtype 1-like CGRP receptor that inactivates extra-cellular signal response kinase by a cAMP-depen-dent mechanism[J]. Eur J Pharmacol, 2003,470(3):125-137.
doi: 10.1016/S0014-2999(03)01763-1 pmid: 12798950
[41] Uzan B, de Vernejoul MC, Cressent M . RAMPs and CRLR expressions in osteoblastic cells after dexame-thasone treatment[J]. Biochem Biophys Res Commun, 2004,321(4):802-808.
doi: 10.1016/j.bbrc.2004.07.037
[42] Villa I, Mrak E, Rubinacci A , et al. CGRP inhibits osteoprotegerin production in human osteoblast-like cells via cAMP/PKA-dependent pathway[J]. Am J Physiol Cell Physiol, 2006,291(3):C529-C537.
doi: 10.1152/ajpcell.00354.2005
[43] Russo AF, Kuburas A, Kaiser EA , et al. A potential preclinical migraine model: CGRP-sensitized mice[J]. Mol Cell Pharmacol, 2009,1(5):264-270.
doi: 10.1186/1471-213X-8-96 pmid: 20336186
[44] Bohn KJ, Li BL, Huang XF , et al. CGRP receptor activity in mice with global expression of human receptor activity modifying protein 1[J]. Br J Phar-macol, 2017,174(12):1826-1840.
doi: 10.1111/bph.13783 pmid: 28317098
[45] Zhao ZL, Fu XB, Zhang G , et al. The influence of RAMP1 overexpression on CGRP-induced osteo-genic differentiation in MG-63 cells in vitro: an experimental study[J]. J Cell Biochem, 2013,114(2):314-322.
doi: 10.1002/jcb.24375 pmid: 22949393
[46] 蒋章, 张慧宇, 张纲 , 等. RAMP1-siRNA对CGRP促MG-63细胞增殖作用影响的实验研究[J]. 实用口腔医学杂志, 2015,31(3):339-342.
Jiang Z, Zhang HY, Zhang G , et al. Experimental study on the effect of RAMP1-siRNA on CGRP-in-duced proliferation of MG-63 cells[J]. J Pract Stomatol, 2015,31(3):339-342.
[47] Kurashige C, Hosono K, Matsuda H , et al. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice[J]. FASEB J, 2014,28(3):1237-1247.
doi: 10.1096/fj.13-238998 pmid: 24308973
[48] Mishima T, Ito Y, Nishizawa N , et al. RAMP1 signa-ling improves lymphedema and promotes lymphan-giogenesis in mice[J]. J Surg Res, 2017,219:50-60.
doi: 10.1016/j.jss.2017.05.124 pmid: 29078910
[49] Erdling A, Sheykhzade M, Edvinsson L . Differential inhibitory response to telcagepant on αCGRP in-duced vasorelaxation and intracellular Ca 2+ levels in the perfused and non-perfused isolated rat middle cerebral artery [J]. J Headache Pain, 2017,18(1):61.
doi: 10.1186/s10194-017-0768-4
[50] Kawashima-Takeda N, Ito Y, Nishizawa N , et al. RAMP1 suppresses mucosal injury from dextran sodium sulfate-induced colitis in mice[J]. J Gastroen-terol Hepatol, 2017,32(4):809-818.
doi: 10.1111/jgh.13505 pmid: 27513455
[51] Umeda Y, Takamiya M, Yoshizaki H , et al. Inhibition of mitogen-stimulated T lymphocyte proliferation by calcitonin gene-related peptide[J]. Biochem Biophys Res Commun, 1988,154(1):227-235.
doi: 10.1016/0006-291X(88)90674-2 pmid: 2840066
[52] Wang F, Millet I, Bottomly K , et al. Calcitonin gene-related peptide inhibits interleukin 2 production by murine T lymphocytes[J]. J Biol Chem, 1992,267(29):21052-21057.
pmid: 1383217
[53] Asahina A, Hosoi J, Murphy GF , et al. Calcitonin gene-related peptide modulates Langerhans cell antigen-presenting function[J]. Proc Assoc Am Physicians, 1995,107(2):242-244.
[54] Cheng L, Khan M, Mudge AW . Calcitonin gene-related peptide promotes Schwann cell prolifera-tion[J]. J Cell Biol, 1995,129(3):789-796.
doi: 10.1083/jcb.129.3.789 pmid: 7730412
[55] Ichinose M, Sawada M . Enhancement of phagocy-tosis by calcitonin gene-related peptide (CGRP) in cultured mouse peritoneal macrophages[J]. Peptides, 1996,17(8):1405-1414.
doi: 10.1016/S0196-9781(96)00198-2 pmid: 8971938
[56] Vignery A, McCarthy TL . The neuropeptide calci-tonin gene-related peptide stimulates insulin-like growth factor Ⅰ production by primary fetal rat osteo-blasts[J]. Bone, 1996,18(4):331-335.
doi: 10.1016/8756-3282(96)00017-8 pmid: 8726390
[57] He Y, Ding G, Wang X , et al. Calcitonin gene-related peptide in Langerhans cells in psoriatic plaque le-sions[J]. Chin Med J, 2000,113(8):747-751.
doi: 10.3748/wjg.v6.i5.747 pmid: 11776062
[58] Li XQ, Verge VM, Johnston JM , et al. CGRP pe-ptide and regenerating sensory axons[J]. J Neuropa-thol Exp Neurol, 2004,63(10):1092-1103.
doi: 10.1093/jnen/63.10.1092 pmid: 15535136
[59] 王钊, 金丹, 陀泳华 , 等. 降钙素基因相关肽促进大鼠BMSCs迁移及VEGF的表达[J]. 中国修复重建外科杂志, 2011,25(11):1371-1376.
Wang Z, Jin D, Tuo YH , et al. Calcitonin gene-related peptide promoting migration of rat bone marrow mesenchymal stem cells and stimulating expression of vascular endothelial growth factor[J]. Chin J Reparat Reconstruct Surg, 2011,25(11):1371-1376.
[60] Li WW, Guo TZ, Shi XY , et al. Neuropeptide re-gulation of adaptive immunity in the tibia fracture model of complex regional pain syndrome[J]. J Neuroinflammation, 2018,15(1):105.
doi: 10.1186/s12974-018-1145-1 pmid: 29642930
[61] Héroux M, Hogue M, Lemieux S , et al. Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1[J]. J Biol Chem, 2007,282(43):31610-31620.
doi: 10.1074/jbc.M701790200 pmid: 17785463
[62] Walker CS, Eftekhari S, Bower RL , et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor[J]. Ann Clin Transl Neurol, 2015,2(6):595-608.
doi: 10.1002/acn3.197
[63] Walker CS, Raddant AC, Woolley MJ , et al. CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured[J]. Cephalalgia, 2018,38(3):437-451.
doi: 10.1177/0333102417691762 pmid: 28165287
[64] Bühlmann N, Leuthäuser K, Muff R , et al. A recep-tor activity modifying protein (RAMP) 2-dependent adrenomedullin receptor is a calcitonin gene-related peptide receptor when coexpressed with human RAMP1[J]. Endocrinology, 1999,140(6):2883-2890.
doi: 10.1210/endo.140.6.6783 pmid: 10342881
[65] Pondel MD, Mould R . Cloning and transcriptional analysis of the mouse receptor activity modifying protein-1 gene promoter[J]. BMC Mol Biol, 2005,6:7.
doi: 10.1186/1471-2199-6-7 pmid: 1079840
[66] Kadmiel M, Fritz-Six KL, Caron KM . Understanding RAMPs through genetically engineered mouse models[J]. Adv Exp Med Biol, 2012,744:49-60.
doi: 10.1007/978-1-4614-2364-5
[67] Edvinsson L, Warfvinge K . Recognizing the role of CGRP and CGRP receptors in migraine and its treat-ment[J]. Cephalalgia, 2017. doi: 10.1177/0333102417736900.[Epub ahead of print].
doi: 10.1177/0333102417736900 pmid: 29020807
[68] Sexton PM, Poyner DR, Simms J , et al. Modulating receptor function through RAMPs: can they represent drug targets in themselves[J]. Drug Discov Today, 2009,14(7/8):413-419.
doi: 10.1016/j.drudis.2008.12.009 pmid: 19150656
[69] Shindo T, Tanaka M, Kamiyoshi A , et al. Regulation of cardiovascular development and homeostasis by the adrenomedullin-RAMP system[J]. Peptides, 2018. doi: 10.1016/j.peptides.2018.04.004.[Epub ahead of print].
doi: 10.1016/j.peptides.2018.04.004 pmid: 29689347
[1] 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63.
[2] 向琳,陈晖璐,袁影,张勤,辛娜,宫苹. 降钙素基因相关肽对种植体周围神经、血管再生及骨结合的作用[J]. 国际口腔医学杂志, 2018, 45(5): 509-515.
[3] 伍彩娟, 杨岚, 郭吕华. 降钙素基因相关肽在骨组织再生中的作用及机制[J]. 国际口腔医学杂志, 2017, 44(4): 488-492.
[4] 王晨星综述 陈刚审校. 脂肪干细胞在骨组织工程中的应用进展[J]. 国际口腔医学杂志, 2011, 38(5): 550-553.
[5] 刘琦综述 李祖兵审校. nell-1 型基因成骨及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2011, 38(3): 364-366.
[6] 李灵敏,曹志中. 神经肽降钙素基因相关肽与牙周炎的关系[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[7] 邹淑娟,陈扬熙. 机械张力对颅面骨缝成骨作用的研究进展[J]. 国际口腔医学杂志, 2005, 32(03): 172-174.
[8] 韩妲丽,曹志中. 龈沟液中神经肽及其与牙周炎的关系[J]. 国际口腔医学杂志, 2005, 32(02): 96-98.
[9] 吴昊 谢昊 . 载体对骨形成蛋白诱导成骨作用的影响[J]. 国际口腔医学杂志, 2003, 30(02): 102-104.
[10] 李纾,汪说之,樊明文. 表皮生长因子及其受体在牙周组织中表达的病理生理意义[J]. 国际口腔医学杂志, 2001, 28(03): -.
[11] 黄莉. 牙髓组织中的炎症介质[J]. 国际口腔医学杂志, 1999, 26(05): -.
[12] 张云飞. 正畸牙齿移动中降钙素基因相关肽的研究进展[J]. 国际口腔医学杂志, 1999, 26(02): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .