国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (4): 488-492.doi: 10.7518/gjkq.2017.04.023

• 综述 • 上一篇    下一篇

降钙素基因相关肽在骨组织再生中的作用及机制

伍彩娟, 杨岚, 郭吕华   

  1. 广州医科大学口腔医学院•附属口腔医院修复科 广州 510140
  • 收稿日期:2016-08-20 修回日期:2017-04-14 出版日期:2017-07-01 发布日期:2017-07-01
  • 通讯作者: 郭吕华,主任医师,博士,Email:562210919@qq.com
  • 作者简介:伍彩娟,硕士,Email:451931086@qq.com
  • 基金资助:
    广东省科技计划项目(2013B021800278); 广东省广州市荔湾区科技计划项目(20141216055)

Role and mechanism of the calcitonin gene related peptide in bone tissue regeneration

Wu Caijuan, Yang Lan, Guo Lühua   

  1. Stomatological School of Guangzhou Medical University, Dept. of Prosthodontics, Affiliated Hospital of Stomatology, Guangzhou 510140, China
  • Received:2016-08-20 Revised:2017-04-14 Online:2017-07-01 Published:2017-07-01
  • Supported by:
    This study was supported by Science and Technology Planning Project of Guangdong Province(2013B021800278) and Science and Technology Planning Project of Guangzhou Liwan District of Guangdong Province(20141216055).

摘要: 骨量不足是目前口腔种植修复中经常面临的问题,常用的骨组织再生办法有很多,如自体骨移植、生物骨粉及富血小板纤维膜的利用等,但临床效果都不是很显著。骨是一种由破骨和成骨细胞介导的处于动态代谢更新状态的组织,骨代谢受各种全身因素的影响,降钙素基因相关肽(CGRP)是一种在人体广泛分布的神经肽,多项研究表明其在骨代谢中具有重要作用,特别是在成骨方面。其具体成骨作用及机制尚未完全清楚,一直在探讨之中,本文对此作一综述。

关键词: 降钙素基因相关肽, 骨再生, 成骨分化

Abstract: Insufficient bone mass is a common problem in oral implant prostheses. The widely used bone regeneration methods in clinical applications include autologous bone grafting and the use of biological bone powder and platelet-rich fiber membrane. Despite the variations in all the methods, the clinical effects are unremarkable. Bones involve a dynamic organization mediated by osteoclast and osteoblast metabolism, which is influenced by various systemic factors. Calcitonin gene related peptides(CGRP) are extensively distributed neuropeptides in the body. Many studies have shown that CGRP plays an important role in bone metabolism, especially in osteogenesis. However, the specific mechanism of CGRP in osteogenesis is unclear and requires further investigation and discussion. Therefore, we conducted this review to study the role and mechanism of CGRP.

Key words: calcitonin gene related peptide, bone regeneration, osteogenic differentiation

中图分类号: 

  • R68
[1] Lv S, Liu H, Cui J, et al. Histochemical examination of cathepsin K, MMP1 and MMP2 in compressed periodontal ligament during orthodontic tooth move-ment in periostin deficient mice[J]. J Mol Histol, 2014, 45(3):303-309.
[2] Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions [J]. BMC Med, 2011, 9:66.
[3] Giannoudis PV, Einhorn TA. Bone morphogenetic proteins in musculoskeletal medicine[J]. Injury, 2009, 40(Suppl 3):S1-S3.
[4] Ivanovski S, Vaquette C, Gronthos S, et al. Multi-phasic scaffolds for periodontal tissue engineering [J]. J Dent Res, 2014, 93(12):1212-1221.
[5] Magan A, Ripamonti U. Biological aspects of perio-dontal tissue regeneration: cementogenesis and the induction of Sharpey’s fibres[J]. SADJ, 2013, 68(7): 304-306, 308-312, 314.
[6] Sun J, Zhang T, Zhang P, et al. Overexpression of the PLAP-1 gene inhibits the differentiation of BMSCs into osteoblast-like cells[J]. J Mol Histol, 2014, 45(5):599-608.
[7] 郑林丰, 谢应桂, 许愿忠. 降钙素基因相关肽在神经系统损伤中的作用[J]. 创伤外科杂志, 2006, 8 (6):571-573.
Zheng LF, Xie YG, Xu YZ. Effects of calcitonin gene-related peptide on nerve system injury[J]. J Traumat Surg, 2006, 8(6):571-573.
[8] Martin CD, Jimenez-Andrade JM, Ghilardi JR, et al. Organization of a unique net-like meshwork of CGRP + sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain[J]. Neurosci Lett, 2007, 427(3): 148-152.
[9] Wang L, Shi X, Zhao R, et al. Calcitonin-gene-rela-ted peptide stimulates stromal cell osteogenic diffe-rentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption[J]. Bone, 2010, 46(5):1369-1379.
[10] Lv L, Wang Y, Zhang J, et al. Healing of periodontal defects and calcitonin gene related peptide expre-ssion following inferior alveolar nerve transection in rats[J]. J Mol Histol, 2014, 45(3):311-320.
[11] Lv S, Li J, Feng W, et al. Expression of HMGB1 in the periodontal tissue subjected to orthodontic force application by Waldo’s method in mice[J]. J Mol Histol, 2015, 46(1):107-114.
[12] Li J, Kreicbergs A, Bergström J, et al. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: A study in rat angulated tibia[J]. J Orthop Res, 2007, 25(9):1204- 1212.
[13] Wu Y, Jing D, Ouyang H, et al. Pre-implanted sensory nerve could enhance the neurotization in tissue-engineered bone graft[J]. Tissue Eng Part A, 2015, 21(15/16):2241-2249.
[14] Sample SJ, Hao Z, Wilson AP, et al. Role of calci-tonin gene-related peptide in bone repair after cyclic fatigue loading[J]. PLoS One, 2011, 6(6):e20386.
[15] 马文辉, 时述山, 李亚非, 等. 神经肽对人成骨细胞生物学影响机理的研究[J]. 中国矫形外科杂志, 2001, 8(11):1091-1095.
Ma WH, Shi SS, Li YF, et al. Mechanism of the effects of neuropeptides to the main biological action of normal osteoblnst of people[J]. Orthop J Chin, 2001, 8(11):1091-1095.
[16] Lerner UH. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone[J]. J Musculoskelet Neuronal In-teract, 2006, 6(1):87-95.
[17] Ma W, Zhang X, Shi S, et al. Neuropeptides stimu-late human osteoblast activity and promote gap junc-tional intercellular communication[J]. Neurope-ptides, 2013, 47(3):179-186.
[18] Qi T, Hay DL. Structure-function relationships of the N-terminus of receptor activity-modifying pro-teins[J]. Br J Pharmacol, 2010, 159(5):1059-1068.
[19] Zhang Z, Dickerson IM, Russo AF. Calcitonin gene-related peptide receptor activation by receptor ac-tivity-modifying protein-1 gene transfer to vascular smooth muscle cells[J]. Endocrinology, 2006, 147 (4):1932-1940.
[20] Tian G, Zhang G, Tan YH. Calcitonin gene-related peptide stimulates BMP-2 expression and the dif-ferentiation of human osteoblast-like cells in vitro [J]. Acta Pharmacol Sin, 2013, 34(11):1467-1474.
[21] Fang Z, Yang Q, Xiong W, et al. Effect of CGRP-adenoviral vector transduction on the osteoblastic differentiation of rat adipose-derived stem cells[J]. PLoS One, 2013, 8(8):e72738.
[22] Bischoff DS, Zhu JH, Makhijani NS, et al. Angio-genic CXC chemokine expression during differen-tiation of human mesenchymal stem cells towards the osteoblastic lineage[J]. J Cell Biochem, 2008, 103(3):812-824.
[23] Suzuki A, Uemura T, Nakamura H. Control of bone remodeling by nervous system. Neural involvement in fracture healing and bone regeneration[J]. Clin Calcium, 2010, 20(12):1820-1827.
[24] Xu J, Kauther MD, Hartl J, et al. Effects of alpha-calcitonin gene-related peptide on osteoprotegerin and receptor activator of nuclear factor-κB ligand expression in MG-63 osteoblast-like cells exposed to polyethylene particles[J]. J Orthop Surg Res, 2010, 5:83.
[25] Kanczler JM, Oreffo RO. Osteogenesis and angio-genesis: the potential for engineering bone[J]. Eur Cell Mater, 2008, 15:100-114.
[26] 陀泳华, 郭小磊, 张鑫鑫, 等. 降钙素基因相关肽对血管内皮细胞体外血管生成的作用及机制研究[J]. 中华骨科杂志, 2012, 32(8):781-787.
Tuo YH, Guo XL, Zhang XX, et al. Effect of calci-tonin gene-related peptide on angiogenesis of human umbilical vein endothelial cells[J]. Chin J Orthopaed, 2012, 32(8):781-787.
[27] Xiang L, Ma L, Wei N, et al. Effect of lentiviral vec-tor overexpression α-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-deficient mice[J]. Bone, 2017, 94:135-140.
[1] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[4] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[5] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[6] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[7] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[8] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[9] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[10] 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203.
[11] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[12] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[13] 刘嘉程,孟昭松,李宏捷,隋磊. 卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景[J]. 国际口腔医学杂志, 2021, 48(5): 556-562.
[14] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397.
[15] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .