国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (4): 471-476.doi: 10.7518/gjkq.2017.04.020

• 综述 • 上一篇    下一篇

促牙本质再矿化的生物活性树脂研究进展

黄紫华, 武诗语, 麦穗   

  1. 中山大学光华口腔医学院•附属口腔医院牙体牙髓病科;广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2016-12-20 修回日期:2017-02-10 出版日期:2017-07-01 发布日期:2017-07-01
  • 通讯作者: 麦穗,副教授,博士,Email:maisui@mail.sysu.edu.cn
  • 作者简介:黄紫华,硕士,Email:11213059114@qq.com
  • 基金资助:
    国家自然科学基金(81100743); 广东省科技计划国际合作项目(2013B051000031); 广东省自然科学基金(2014A0303130- 68)

Review of bioactive resins in inducing dentin remineralization

Huang Zihua, Wu Shiyu, Mai Sui   

  1. Dept. of Conserva-tive Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-12-20 Revised:2017-02-10 Online:2017-07-01 Published:2017-07-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81100743), Guangdong Province International Science and Technology Cooperation Program(2013B051000031) and Guangdong Province Natural Science Foundation(2014A030313068).

摘要: 诱导混合层裸露胶原再矿化是提高树脂牙本质粘接耐久性的重要方法。然而粘接界面有限的矿化离子源限制了牙本质再矿化的临床应用。采用无机材料对粘接树脂改性,可制备出具有生物活性的树脂修复材料,这些树脂在溶液中可缓慢释放矿化离子(如Ca2+、PO43-、OH-等),具有促进脱矿牙体组织再矿化的潜能。用于树脂改性的无机材料包括硅酸盐、磷酸钙盐、生物活性玻璃等。研究证实生物活性树脂修复材料具有促进脱矿牙本质再矿化、抑制胶原纤维降解的能力,但在树脂中添加无机材料会影响树脂的力学性能,制备具有良好力学性能的生物活性树脂是研究的重点和难点。本文将分类阐述不同生物活性树脂修复材料在牙本质再矿化中的作用。

关键词: 树脂, 生物活性, 硅酸盐水门汀, 无定形磷酸钙, 生物活性玻璃

Abstract: Dentin remineralization is one of the most important methods to improve resin-dentin bonding durability. However, the limited mineral ion supply limits the remineralization of demineralized dentine. Experimental adhesives doped with inorganic fillers are proven bioactive and can release mineral ions. These inorganic materials include silicate, calcium phosphate, and bioactive glass. Many studies have proven that these bioactive resins can induct the remineralization of dentine and protect collagen fibrils. Some of the studies also showed the poor mechanical properties of the resins. Synthesizing new bioactive resins with excellent mechanical properties is important. This review presents the effects of the bioactive restorative composite in dentin remineralization.

Key words: resin, bioactivity, silicate cement, amorphous calcium phosphate, bioactive glass

中图分类号: 

  • Q781.1
[1] Qi YP, Li N, Niu LN, et al. Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate[J]. Acta Bioma-ter, 2012, 8(2):836-842.
[2] Dai L, Liu Y, Salameh Z, et al. Can caries-affected dentin be completely remine-ralized by guided tissue remineralization[J]. Dent Hypotheses, 2011, 2(2): 74-82.
[3] Liu Y, Li N, Qi Y, et al. The use of sodium trime-taphosphate as a biomimetic analog of matrix pho-sphoproteins for remineralization of artificial caries-like dentin[J]. Dent Mater, 2011, 27(5):465-477.
[4] Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine[J]. Bio-materials, 2008, 29(8):1127-1137.
[5] Sauro S, Osorio R, Watson TF, et al. Influence of phosphoproteins’ biomimetic analogs on remine-ralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems[J]. Dent Mater, 2015, 31(7):759-777.
[6] Profeta AC. Preparation and properties of calcium-silicate filled resins for dental restoration. Part Ⅰ: chemical-physical characterization and apatite-for-ming ability[J]. Acta Odontol Scand, 2014, 72(8): 597-606.
[7] Darvell BW, Wu RC. “MTA”—an hydraulic silicate cement: review update and setting reaction[J]. Dent Mater, 2011, 27(5):407-422.
[8] Camilleri J. Evaluation of selected properties of mineral trioxide aggregate sealer cement[J]. J Endod, 2009, 35(10):1412-1417.
[9] Kim YK, Gu LS, Bryan TE, et al. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein ana-logues in the presence of calcium, phosphate and hydroxyl ions[J]. Biomaterials, 2010, 31(25):6618- 6627.
[10] Liu Y, Li N, Qi YP, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly[J]. Adv Mater Weinheim, 2011, 23(8):975-980.
[11] Liu Y, Kim YK, Dai L, et al. Hierarchical and non-hierarchical mineralisation of collagen[J]. Bioma-terials, 2011, 32(5):1291-1300.
[12] Gu LS, Kim YK, Liu Y, et al. Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating me-chanism for biomimetic mineralization[J]. Acta Biomater, 2011, 7(1):268-277.
[13] Profeta AC, Mannocci F, Foxton R, et al. Expe-rimental etch-and-rinse adhesives doped with bioac-tive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces[J]. Dent Mater, 2013, 29(7):729-741.
[14] Wang Z, Shen Y, Haapasalo M, et al. Polycarboxy-lated microfillers incorporated into light-curable resin-based dental adhesives evoke remineralization at the mineral-depleted dentin[J]. J Biomater Sci Polym Ed, 2014, 25(7):679-697.
[15] Sauro S, Osorio R, Osorio E, et al. Novel light-cura-ble materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces[J]. J Biomater Sci Polym Ed, 2013, 24(8):940-956.
[16] Gandolfi MG, Taddei P, Siboni F, et al. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid ‘smart’ materials [J]. Dent Mater, 2011, 27(11):1055-1069.
[17] Rodrigues MC, Natale LC, Arana-Chaves VE, et al. Calcium and phosphate release from resin-based materials containing different calcium orthopho-sphate nanoparticles[J]. J Biomed Mater Res Part B Appl Biomater, 2015, 103(8):1670-1678.
[18] Qidwai M, Sheraz MA, Ahmed S, et al. Preparation and characterization of bioactive composites and fibers for dental applications[J]. Dent Mater, 2014, 30(10):e253-e263.
[19] Chiari MD, Rodrigues MC, Xavier TA, et al. Me-chanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles[J]. Dent Mater, 2015, 31(6):726-733.
[20] Melo MA, Cheng L, Zhang K, et al. Novel dental ad-hesives containing nanoparticles of silver and amor-phous calcium phosphate[J]. Dent Mater, 2013, 29 (2):199-210.
[21] Moreau JL, Sun L, Chow LC, et al. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocom-posite[J]. J Biomed Mater Res Part B Appl Biomater, 2011, 98(1):80-88.
[22] Xu HH, Moreau JL, Sun L, et al. Nanocomposite containing amorphous calcium phosphate nanopar-ticles for caries inhibition[J]. Dent Mater, 2011, 27 (8):762-769.
[23] Ünal M, Oznurhan F, Kapdan A, et al. A com-parative clinical study of three fissure sealants on primary teeth: 24-month results[J]. J Clin Pediatr Dent, 2015, 39(2):113-119.
[24] Paschos E, Geiger FJ, Malyk Y, et al. Efficacy of four preventive measures against enamel demine-ralization at the bracket periphery-comparison of microhardness and confocal laser microscopy ana-lysis[J]. Clin Oral Investig, 2016, 20(6):1355-1366.
[25] Marovic D, Tarle Z, Hiller KA, et al. Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers[J]. Dent Mater, 2014, 30(9):1052-1060.
[26] Xu HH, Moreau JL. Dental glass-reinforced com-posite for caries inhibition: calcium phosphate ion release and mechanical properties[J]. J Biomed Mater Res Part B Appl Biomater, 2010, 92(2):332- 340.
[27] Marovic D, Tarle Z, Hiller KA, et al. Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate[J]. Clin Oral Investig, 2014, 18(3):783-792.
[28] Xu HH, Weir MD, Sun L, et al. Strong nanocom-posites with Ca, PO 4 , and F release for caries inhibi-tion[J]. J Dent Res, 2010, 89(1):19-28.
[29] Weir MD, Chow LC, Xu HH. Remineralization of demineralized enamel via calcium phosphate nano-composite[J]. J Dent Res, 2012, 91(10):979-984.
[30] Jones JR. Review of bioactive glass: from hench to hybrids[J]. Acta Biomater, 2013, 9(1):4457-4486.
[31] Wang Z, Jiang T, Sauro S, et al. The dentine re-mineralization activity of a desensitizing bioactive glass-containing toothpaste: an in vitro study[J]. Aust Dent J, 2011, 56(4):372-381.
[32] Sauro S, Watson TF, Thompson I, et al. One-bottle self-etching adhesives applied to dentine air-abraded using bioactive glasses containing polyacrylic acid: an in vitro microtensile bond strength and confocal microscopy study[J]. J Dent, 2012, 40(11):896-905.
[33] Profeta AC, Mannocci F, Foxton RM, et al. Bioac-tive effects of a calcium/sodium phosphosilicate on the resin-dentine interface: a microtensile bond strength, scanning electron microscopy, and confocal microscopy study[J]. Eur J Oral Sci, 2012, 120(4): 353-362.
[34] Sauro S, Osorio R, Watson TF, et al. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface[J]. J Mater Sci Mater Med, 2012, 23(6):1521-1532.
[35] Khvostenko D, Mitchell JC, Hilton TJ, et al. Mecha-nical performance of novel bioactive glass containing dental restorative composites[J]. Dent Mater, 2013, 29(11):1139-1148.
[36] Tauböck TT, Zehnder M, Schweizer T, et al. Func-tionalizing a dentin bonding resin to become bioac-tive[J]. Dent Mater, 2014, 30(8):868-875.
[37] Osorio R, Yamauti M, Sauro S, et al. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation[J]. J Endod, 2012, 38(9):1227-1232.
[38] Khvostenko D, Hilton TJ, Ferracane JL, et al. Bioac-tive glass fillers reduce bacterial penetration into marginal gaps for composite restorations[J]. Dent Mater, 2016, 32(1):73-81.
[39] Profeta AC. Dentine bonding agents comprising calcium-silicates to support proactive dental care: origins, development and future[J]. Dent Mater J, 2014, 33(4):443-452.
[1] 薛晶, 杨静. 基于循证实践的Ⅱ类洞复合树脂修复的操作要点[J]. 国际口腔医学杂志, 2023, 50(4): 375-387.
[2] 王钢,陈卓. 邻面去釉后釉质表面患龋风险控制的描述性综述[J]. 国际口腔医学杂志, 2023, 50(4): 395-400.
[3] 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18.
[4] 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723.
[5] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[6] 王路明,曹潇,仵琳悦,李蕴聪,雷波,牛林. 掺锌生物活性玻璃纳米颗粒对复合树脂力学性能影响的实验研究[J]. 国际口腔医学杂志, 2022, 49(4): 404-411.
[7] 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419.
[8] 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
[9] 孟秀萍,侯建华,李怡然,孙梦瑶. 龈壁提升术材料选择及边缘设计的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 280-286.
[10] 薛晶. 邻面成形系统的发展和临床应用[J]. 国际口腔医学杂志, 2020, 47(6): 621-626.
[11] 张婧婷,潘旭东,张文云. 遮色层厚度对聚醚醚酮-Crea.lign修复体颜色的影响[J]. 国际口腔医学杂志, 2020, 47(4): 418-423.
[12] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[13] 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570.
[14] 汪洋, 申玉芹, 于文雯, 孙新华. 改良介孔生物活性玻璃在颌面部骨缺损修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 32-35.
[15] 梁继超, 王芬, 张正华, 庞富升, 侯梅娟, 张凤英. 正畸分牙辅助邻面龋充填治疗的临床疗效观察[J]. 国际口腔医学杂志, 2017, 44(4): 440-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .