国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 195-200.doi: 10.7518/gjkq.2016.02.018

• 综述 • 上一篇    下一篇

定量时间空间控制在生长因子促血管形成中的作用

徐孟丹,邹多宏   

  1. 安徽医科大学口腔医学院,安徽医科大学附属口腔医院,安徽省口腔疾病研究中心实验室 合肥 230032
  • 收稿日期:2015-08-24 修回日期:2015-10-28 出版日期:2016-03-01 发布日期:2016-03-01
  • 通讯作者: 邹多宏,副教授,博士,Email:zouduohongyy@163.com
  • 作者简介:徐孟丹,硕士,Email:wshdybf@163.com
  • 基金资助:
    国家自然科学基金(31370983);教育部科技研究重点项目(212080);安徽医科大学博士科研基金(XJ201109)

Function quantitative control of time and space in the growth factor to promote angiogenesis

Xu Mengdan, Zou Duohong   

  1. Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research in Anhui Province, Hefei 230032, China)
  • Received:2015-08-24 Revised:2015-10-28 Online:2016-03-01 Published:2016-03-01

摘要: 低血性疾病危害性大,致死、致残率高,已成为临床医学面临的难题之一,而血运重建对低血性疾病有明显疗效。血管发生和成熟需要多种血管生长因子在特定的时间空间和质量浓度下共同作用,正常的脉管系统需要血管内皮生长因子(VEGF)表达在时间和空间上的精确控制。在不同的时间和特定的微环境下,同一种生长因子的质量浓度亦不相同,也起着不同的作用,例如转化生长因子-β1、VEGF受体和低氧诱导因子等。在血管生成和组织功能重建过程中,血管新生的方向性受内皮细胞和平滑肌细胞定向迁移的影响,分支形态发生也受VEGF空间梯度的高度调节,体现出VEGF表达的空间分布特性。血管生长因子的时间空间控制需建立组织内细胞因子的定量标准,从而精确地控制损伤组织部位血管形成;寻找合适的传递系统,使组织内生长因子达到特定的部位。了解血管生长因子的时间、空间特性对新生血管的构建具有重要的作用,合理利用血管生长因子的这一特性,将为治疗血管性疾病提供更多的选择。

关键词: 血管生长因子, 基因增强的组织工程, 血管生成, 血管生长因子, 基因增强的组织工程, 血管生成

Abstract: Hemorrhagic disease which is harmfulness, high death rate and morbidity has become one of the challenges faced by the clinical medicine. While, the blood supply reconstruction of low hemorrhagic diseases have obvious curative effect. Angiogenesis need a variety of mature vascular growth factors in certain time space and mass concentration under the joint action of normal vasculature to vascular endothelial growth factor(VEGF) expression in precise control of time and space. Under different time the specific environment, mass concentration of the same kind of growth factor is not the same, which plays a different role, such as transforming growth factor-β1, VEGF receptors and hif, etc. In the process of angiogenesis and tissue function reconstruction, the direction of the angiogenesis under the influence of directional migration of endothelial cells and smooth muscle cells, branching morphogenesis and VEGF space gradient height adjustment, which reflects the space distribution features of VEGF expression. The time space of vascular growth factors control needs to establish the quantitative standards of cytokines in the organization, so as to accurately control formation damage tissue blood vessels; So looking for the right transfer system to achieve specific growth factors within the area, and understanding of time and space characteristics of vascular growth factor plays an important role in the construction of new blood vessels. The characteristics of the rational utilization of vascular growth factors will provide more choice for the treatment of vascular disease.

Key words: vascular endothelial growth factor, gene enhanced tissue engineering, angiogenesis, vascular endothelial growth factor, gene enhanced tissue engineering, angiogenesis

中图分类号: 

  • Q 813.1+3
[1] Furukawa S, Yang L, Sameshima H, et al. Repetitive administration of acetylcholine receptor agonist rescues brain inflammation and brain damage after hypoxia-ischemia in newborn rat[J]. J Perinat Med, 2014, 42(3):379-384.
[2] Steagall RJ, Daniels CR, Dalal S, et al. Extracellular ubiquitin increases expression of angiogenic molecules and stimulates angiogenesis in cardiac microvascular endothelial cells[J]. Microcirculation, 2014, 21(4):324-332.
[3] Tessneer KL, Pasula S, Cai X, et al. Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency[J]. Arterioscler Thromb Vasc Biol, 2014, 34(2):331-337.
[4] Golub R, Cumano A. Embryonic hematopoiesis[J]. Blood Cells Mol Dis, 2013, 51(4):226-231.
[5] Hashizume H, Falcón BL, Kuroda T, et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth[J]. Cancer Res, 2010, 70(6):2213-2223.
[6] 邱亚双, 周慧芳. HIF-1α和VEGF在喉癌中的表达及其与血管生成的关系[J]. 临床耳鼻咽喉头颈外科杂志, 2014, 28(6):389-393.
Qiu YS, Zhou HF. Expression of HIF-1alpha and VEGF in human laryngeal carcinoma and its relationship with angiogenes[J]. J Clin Otorhinolaryngol Head Neck Surg, 2014, 28(6):389-393.
[7] Butler MJ, Sefton MV. Cotransplantation of adiposederived mesenchymal stromal cells and endothelial cells in a modular construct drives vascularization in SCID/bg mice[J]. Tissue Eng Part A, 2012, 18(15/ 16):1628-1641.
[8] Yancopoulos GD, Davis S, Gale NW, et al. Vascularspecific growth factors and blood vessel formation [J]. Nature, 2000, 407(6801):242-248.
[9] Iacobaeus E, Amoudruz P, Str?m M, et al. The expression of VEGF-A is down regulated in peripheral blood mononuclear cells of patients with secondary progressive multiple sclerosis[J]. PLoS One, 2011, 6(5):e19138.
[10] Kusuhara S, Fukushima Y, Fukuhara S, et al. Arhgef 15 promotes retinal angiogenesis by mediating VEGF-induced Cdc42 activation and potentiating RhoJ inactivation in endothelial cells[J]. PLoS One, 2012, 7(9):e45858.
[11] Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis[J]. J Exp Med, 2002, 196(11):1497-1506.
[12] 陈思秀, 李小玉, 孔祥丽, 等. 口腔鳞状细胞癌中血管内皮生长因子-C的表达及其与血管、淋巴管生成、淋巴结转移的关系[J]. 华西口腔医学杂志, 2010, 28(3):319-325. Chen SX, Li XY, Kong XL, et al. The expression of vascular endothelial growth factor-C in oral squamous cell carcinoma and its associations with angiogenesis, lymphangiogenesis and lymph node metastasis[J]. West China J Stomatol, 2010, 28(3):319-325.
[13] 张卫兵, 王林. 上颌快速扩弓腭中缝血管内皮生长因子的时空表达与新骨形成的相关性研究[J]. 华西口腔医学杂志, 2014, 32(6):561-565.
Zhang WB, Wang L. Correlation between vascular endothelial growth factor temporal expression and new bone formation in midpalatal suture during rapid maxillary expansion[J]. West China J Stomatol, 2014, 32(6):561-565.
[14] Chai ZT, Kong J, Zhu XD, et al. MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma[J]. PLoS One, 2013, 8(10): e77957.
[15] Choi JS, Kim HY, Cha JH, et al. Upregulation of vascular endothelial growth factor receptors Flt-1 and Flk-1 in rat hippocampus after transient forebrain ischemia[J]. J Neurotrauma, 2007, 24(3):521-531.
[16] Figley SA, Liu Y, Karadimas SK, et al. Delayed administration of a bio-engineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates allodynia following traumatic spinal cord injury[J]. PLoS One, 2014, 9(5):e96137.
[17] Xing D, Liu L, Marti GP, et al. Hypoxia and hypoxia-inducible factor in the burn wound[J]. Wound Repair Regen, 2011, 19(2):205-213.
[18] Lin TH, Wang CL, Su HM, et al. Functional vascular endothelial growth factor gene polymorphisms and diabetes: effect on coronary collaterals in patients with significant coronary artery disease[J]. Clin Chim Acta, 2010, 411(21/22):1688-1693.
[19] Simonetti O, Lucarini G, Bernardini ML, et al. Expression of vascular endothelial growth factor, apoptosis inhibitors(survivin and p16) and CCL27 in alopecia areata before and after diphencyprone treatment: an immunohistochemical study[J]. Br J Dermatol, 2004, 150(5):940-948.
[20] Jain RK. Molecular regulation of vessel maturation [J]. Nat Med, 2003, 9(6):685-693.
[21] Dangaria SJ, Ito Y, Walker C, et al. Extracellular matrix-mediated differentiation of periodontal progenitor cells[J]. Differentiation, 2009, 78(2/3):79-90.
[22] Han X, Amar S. IGF-1 signaling enhances cell survival in periodontal ligament fibroblasts vs. gingival fibroblasts[J]. J Dent Res, 2003, 82(6):454-459.
[23] Makanya AN, Stauffer D, Ribatti D, et al. Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms[J]. Microsc Res Tech, 2005, 66(6):275-288.
[24] Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia[J]. J Cell Biol, 2003, 161(6):1163-1177.
[25] Zan L, Zhang X, Xi Y, et al. Src regulates angiogenic factors and vascular permeability after focal cerebral ischemia-reperfusion[J]. Neuroscience, 2014, 262:118-128.
[26] Nakao S, Zandi S, Hata Y, et al. Blood vessel endothelial endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph-and angiogenesis[J]. Blood, 2011, 117(3):1081-1090.
[27] Asanome A, Kawabe J, Matsuki M, et al. Nerve growth factor stimulates regeneration of perivascular nerve, and induces the maturation of microvessels around the injured artery[J]. Biochem Biophys Res Commun, 2014, 443(1):150-155.
[28] Saetan N, Honsawek S, Tanavalee A, et al. Relationship of plasma and synovial fluid vascular endothelial growth factor with radiographic severity in primary knee osteoarthritis[J]. Int Orthop, 2014, 38(5):1099-1104.
[29] Spinella F, Garrafa E, Di Castro V, et al. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade[J]. Cancer Res, 2009, 69(6):2669-2676.
[30] Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression[J]. Development, 2000, 127(18):3941-3946.
[31] Wissink MJ, Beernink R, Poot AA, et al. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices [J]. J Control Release, 2000, 64(1/2/3):103-114.
[32] Perets A, Baruch Y, Weisbuch F, et al. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres[J]. J Biomed Mater Res A, 2003, 65(4):489-497.
[33] Hunter KT, Ma T. In vitro evaluation of hydroxyapatite-chitosan-gelatin composite membrane in guided tissue regeneration[J]. J Biomed Mater Res A, 2013, 101(4):1016-1025.
[34] Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments[J]. Chem Soc Rev, 2013, 42(17):7335-7372.
(本文采编 王晴)
[1] 王素杰,谭芹,韦渊,王洁,范杰,岳二丽. 口腔扁平苔藓患者血清血管生成素-2水平与叉头翼状螺旋转录因子阳性调节性T细胞及疾病活动度的相关性分析[J]. 国际口腔医学杂志, 2023, 50(6): 674-678.
[2] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
[3] 王琨,葛奕辰,崔博淼,苟雅萍,孙崇奎,龙敏,肖丽,英李燕. 端粒酶卡侯体蛋白1干扰慢病毒对口腔鳞状细胞癌细胞裸鼠致瘤作用的研究[J]. 国际口腔医学杂志, 2017, 44(1): 32-36.
[4] 李锋综述 敬伟 田卫东审校. 自体脂肪移植血供建立的研究进展[J]. 国际口腔医学杂志, 2012, 39(1): 128-131.
[5] 王晓彦1 武云霞2. 尼美舒利对人舌鳞状细胞癌Tca8113细胞ang-2基因表达的影响[J]. 国际口腔医学杂志, 2011, 38(6): 646-648.
[6] 刘济远,张富贵,袁蒙姜,唐休发. 雌激素影响大鼠随意皮瓣成活面积的试验性研究[J]. 国际口腔医学杂志, 2010, 37(6): 634-636.
[7] 邹多宏综述 黄远亮审校. 低氧诱导因子-1α 的研究进展[J]. 国际口腔医学杂志, 2010, 37(3): 320-320~323.
[8] 钟小奕综述 陈文霞审校. 血管再生研究进展及其应用[J]. 国际口腔医学杂志, 2009, 36(2): 183-183~185.
[9] 张富贵,李权综述 唐休发审校. 带蒂皮瓣新生血管化机制中相关生长因子的作用[J]. 国际口腔医学杂志, 2009, 36(2): 231-231~234.
[10] 叶明福综述 郑有华审校. 骨形态发生蛋白-2 与上皮性肿瘤间的关系[J]. 国际口腔医学杂志, 2009, 36(1): 102-102~104.
[11] 姚瑶,唐休发,. 非血管化自体骨游离移植中骨生成和血管生成的研究进展[J]. 国际口腔医学杂志, 2007, 34(05): 372-373.
[12] 雷志敏,赵怡芳,尚政军,. 肿瘤血管形成方式及其分子机制[J]. 国际口腔医学杂志, 2006, 33(06): 466-468.
[13] 张朋,曾融生,. 牵引成骨中血管生成的研究进展[J]. 国际口腔医学杂志, 2006, 33(02): 131-133.
[14] 尚政军,李金荣,赵怡芳. 肿瘤血管生成拟态[J]. 国际口腔医学杂志, 2005, 32(04): 249-251.
[15] 杨娅,周曾同. 染料木黄酮抗肿瘤血管生成机制的研究进展[J]. 国际口腔医学杂志, 2005, 32(03): 210-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .