国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 177-180.doi: 10.7518/gjkq.2016.02.014

• 综述 • 上一篇    下一篇

骨髓间质干细胞归巢至损伤组织的研究进展

姚琳,林江   

  1. 哈尔滨医科大学附属第四医院口腔科 哈尔滨 150001
  • 收稿日期:2015-08-18 修回日期:2015-11-29 出版日期:2016-03-01 发布日期:2016-03-01
  • 通讯作者: 林江,主任医师,博士,Email:kelvinperio@163.com
  • 作者简介:姚琳,硕士,Email:2673860174@qq.com

Research progress on bone marrow mesenchymal stem cell homing to the damaged tissue

Yao Lin, Lin Jiang   

  1. Dept. of Stomatology, The Affiliated Fourth Hospital of Harbin Medical University, Harbin 150001, China)
  • Received:2015-08-18 Revised:2015-11-29 Online:2016-03-01 Published:2016-03-01

摘要: 骨髓间质干细胞(BMMSC)归巢至损伤的心肌组织,可恢复心肌丧失的功能。基质细胞衍生因子(SDF)1和半胱氨酸-X-半胱氨酸趋化因子受体(CXCR)4是刺激修复细胞迁移至受损心肌的关键性趋化因子,BMMSC会沿着SDF1质量浓度梯度定向迁移至靶器官。BMMSC在冠状动脉和心内膜注入定植率较高,而心内膜注入更为安全且不良反应少。BMMSC释放的神经生长因子、干细胞生长因子和脑衍生神经营养因子等可明显改善谷氨酸诱导的神经元损伤,是组织修复、自身免疫性疾病和移植物抗宿主病的免疫调节剂。BMMSC可调控肿瘤组织中表皮生长因子受体和CXCR4等趋化因子的表达,从而控制肿瘤细胞的增殖。BMMSC亦是牙周组织工程学中理想的种子细胞,而冷冻后的BMMSC可保持其新鲜的特性,归巢数量有所增加。把BMMSC引入牙周损伤组织中,将为牙周损伤组织的修复和再生提供新的思路和楔入点。

关键词: 间质干细胞, 骨髓, 组织损伤, 归巢, 间质干细胞, 骨髓, 组织损伤, 归巢

Abstract: Bone marrow mesenchymal stem cell(BMMSC) homing to damaged myocardial tissues can restore cardiac loss function. Stromal cell-derived factor(SDF)1 and cysteine-X-chemokine receptor(CXCR)4 are key chemokines that stimulate repaired cell migration to the damage myocardium; BMMSC moves along the mass concentration of SDF1 to achieve gradient-directed migration to target organs. While both BMMSC in coronary arteries and endocardial injections promote higher rates of colonization, the latter is safer and presents fewer adverse reactions. BMMSC release of nerve and stem cell growth factors and brain-derived neurotrophic factor can significantly improve glutamate-induced neuronal damage; moreover, this release is an immune modulator of tissue repair, autoimmune diseases, and graft-versus-host disease. BMMSC can regulate the expression of the epidermal growth factor receptor and chemokines of CXCR4 in tumor tissue, thereby controlling tumor cell proliferation. BMMSC are also ideal cells in periodontal tissue engineering; frozen BMMSC can maintain their fresh characteristics and homing ability is increased. BMMSC migration into the periodontal injury tissue can provide a new perspective for the repair and regeneration of periodontal-damaged tissue.

Key words: mesenchymal stem cell, bone marrow, tissue damage, homing, mesenchymal stem cell, bone marrow, tissue damage, homing

中图分类号: 

  • Q 256
[1] Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells[J]. Ann Thorac Surg, 2002, 74(1):19-24.
[2] Belema-Bedada F, Uchida S, Martire A, et al. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2 [J]. Cell Stem Cell, 2008, 2(6):566-575.
[3] Kim D, Chun BG, Kim YK, et al. In vivo tracking of human mesenchymal stem cells in experimental stroke[J]. Cell Transplant, 2008, 16(10):1007-1012.
[4] Russo V, Young S, Hamilton A, et al. Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury[J]. Biomaterials, 2014, 35(13):3956-3974.
[5] Hoover-Plow J, Gong Y. Challenges for heart disease stem cell therapy[J]. Vasc Health Risk Manag, 2012, 8:99-113.
[6] Wang WE, Yang D, Li L, et al. Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium[J]. Circ Res, 2013, 113(3):288-300.
[7] Chen XQ, Chen LL, Fan L, et al. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats[J]. Biochem Biophys Res Commun, 2014, 447(1):145-151.
[8] Tyukavin AI, Galagudza MM, Mikhailov VM, et al. Mechanism of targeted migration of mesenchymal stem cells[J]. Bull Exp Biol Med, 2012, 153(4):577-580.
[9] Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities[J]. Stem Cells, 2007, 25(7):1737-1745.
[10] Fan W, Cheng K, Qin X, et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo[J]. Stem Cells, 2013, 31(1):203-214.
[11] Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J]. Stem Cells, 2006, 24(4):1030-1041.
[12] Song CH, Honmou O, Furuoka H, et al. Identification of chemoattractive factors involved in the migration of bone marrow-derived mesenchymal stem cells to brain lesions caused by prions[J]. J Virol, 2011, 85(21):11069-11078.
[13] Kitaori T, Ito H, Schwarz EM, et al. Stromal cellderived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823.
[14] Li M, Yu J, Li Y, et al. CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF-1alpha/CXCR4 signaling axis[J]. Exp Mol Pathol, 2010, 88(2):250-255.
[15] Song C, Li G. CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors[J]. Cytotherapy, 2011, 13(5):549-561.
[16] Cheng P, Gao ZQ, Liu YH, et al. Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1[J]. Neurosci Lett, 2009, 451(1):52-56.
[17] Rüster B, G?ttig S, Ludwig RJ, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells[J]. Blood, 2006, 108(12):3938-3944.
[18] Ip JE, Wu Y, Huang J, et al. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment[J]. Mol Biol Cell, 2007, 18(8):2873-2882.
[19] Smith H, Whittall C, Weksler B, et al. Chemokines stimulate bidirectional migration of human mesenchymal stem cells across bone marrow endothelial cells[J]. Stem Cells Dev, 2012, 21(3):476-486.
[20] Ries C, Egea V, Karow M, et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines[J]. Blood, 2007, 109(9):4055-4063.
[21] Neuss S, Schneider RK, Tietze L, et al. Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots[J]. Cells Tissues Organs, 2010, 191(1):36-46.
[22] Abe K, Yamashita T, Takizawa S, et al. Stem cell therapy for cerebral ischemia: from basic science to clinical applications[J]. J Cereb Blood Flow Metab, 2012, 32(7):1317-1331.
[23] Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense[J]. Blood, 2012, 119(8):1801-1809.
[24] Pang CJ, Tong L, Ji LL, et al. Synergistic effects of ultrashort wave and bone marrow stromal cells on nerve regeneration with acellular nerve allografts[J]. Synapse, 2013, 67(10):637-647.
[25] Xiang Y, Zheng Q, Jia B, et al. Ex vivo expansion, adipogenesis and neurogenesis of cryopreserved human bone marrow mesenchymal stem cells[J]. Cell Biol Int, 2007, 31(5):444-450.
(本文采编 王晴)
[1] 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63.
[2] 薛令法, 张岱尊, 肖文林, 于保军. 机械牵张力促进小鼠骨髓间充质干细胞的成骨向分化[J]. 国际口腔医学杂志, 2017, 44(6): 679-685.
[3] 张建康, 卫俊俊, 唐曌隆, 余云波, 敬伟. Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控[J]. 国际口腔医学杂志, 2017, 44(4): 459-465.
[4] 张嘉熙1,何美丽1,赵冰松1,李临梅2. 促红细胞生成素在成骨细胞分化中的实验研究[J]. 国际口腔医学杂志, 2016, 43(6): 636-639.
[5] 邱静怡,万凌云,赵志河,李娟. 内外源性应力对间质干细胞成软骨分化的调控[J]. 国际口腔医学杂志, 2016, 43(4): 449-455.
[6] 许繁 杨德圣. 骨髓间质干细胞与胶原膜复合培养的生物学基础和特性[J]. 国际口腔医学杂志, 2015, 42(6): 685-688.
[7] 孙海鹏 王劲茗 邓飞龙. 间质干细胞归巢分子及其归巢[J]. 国际口腔医学杂志, 2014, 41(5): 587-592.
[8] 王涛1 廖天安1 王鸿1 邓伟1 于大海2. 血管内皮生长因子基因修饰骨髓间充质干细胞移植于放射治疗后组织的实验研究[J]. 国际口腔医学杂志, 2014, 41(2): 133-136.
[9] 李建华综述 林新平审校. 正畸支抗用微种植钉对牙根和牙周组织造成的损伤及损伤后的组织学变化[J]. 国际口腔医学杂志, 2012, 39(2): 277-280.
[10] 程谷综述 李祖兵审校. 骨组织工程中的检测方法及其效果评估展望[J]. 国际口腔医学杂志, 2010, 37(5): 593-596.
[11] 荆恒, 李宁毅, 谭帅, 高振华, 陈立强. 骨髓基质干细胞的体外培养及其细胞片层制备[J]. 国际口腔医学杂志, 2010, 37(3): 272-272~274.
[12] 谢晓艳综述 张祖燕审校. 颌骨局灶性骨质疏松样骨髓缺损[J]. 国际口腔医学杂志, 2009, 36(1): 69-69~70,74.
[13] 索明环,张志光,. 脂肪间质干细胞在软骨组织工程中的研究现状[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[14] 谢磊,夏靖燕,赵士芳. Toll样受体3及其信号通路[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[15] 王婷婷,万乾炳,. 骨髓干细胞应用于牙槽骨修复的展望[J]. 国际口腔医学杂志, 2008, 35(S1): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .